УДК 574 ББК 28.081.2 (2 Рос.Ады) O 95

Н.П. Очерет, О.В. Бородкина

Влияние антропогенных факторов на почвенный покров

(район химического завода «Минудобрения» г. Белореченска и Республики Адыгея)

Аннотация:

В работе представлены результаты исследования почв в районе химического завода г. Белореченска с целью установления степени влияния антропогенных факторов на почвенный покров и здоровье населения. Качественные и количественные определния ионов основного солевого состава Cl^{-} , SO_4^{2-} , CO_3^{2-} и другие, тяжелых металлов $(Zn^{2+}, PB^{2+} u Fe^{3+})$, а также биоиндикационные исследования позволяющие получить данные о суммарной нагрузке отходов данного производства на окружающую среду и здоровье населения в этом регионе.

Ключевые слова:

Антропогенные факторы, почва, биоиндикационные методы, окружающая среда, экосистема, тяжелые металлы, ионы основного солевого состава.

Сохранение качества окружающей среды и здоровья населения является одной из самых острых проблем современности.

Нет никаких сомнений, что неблагоприятные антропогенные факторы непосредственно влияют на здоровье населения, загрязняющие вещества различным образом поступают в организм человека, воздействуют на различные органы и ткани и вызывают широкий спектр заболеваний, а некоторые химические вещества имеют многогранный характер действия.

За последние годы наблюдается устойчивая тенденция ухудшения экологической ситуации экосистем биосферы (почва, вода, воздух) и здоровья населения Республики Адыгея.

Антропогенные воздействия на почвы обширней, чем на другие экосистемы биосферы.

Почвенный покров Республики Адыгеи (РА) находится в бедственном состоянии. Деградируют уникальные предкавказские черноземы. Эрозией поражены практически все пахотные земли. Заметно загрязнение земель пестицидами, тяжелыми металлами и другими токсичным и веществам и (1).

Во всех почвах РА концентрация цинка превышает предельно допустимую концентрацию (ПДК) в 1,5-1,9 раза. Вторым по уровню загрязнения почв является хром. Значительная часть почв содержит свинец, никель, ванадий и др. в количествах, превышающих ПДК.

Одним из главных источников загрязнения почв являются промышленные предприятия. В твердых и жидких отходах этих предприятий постоянно присутствуют те или иные вещества, способные оказывать токсическое воздействие на живые организмы и их сообщества.

Хим ический завод «Минудобрения» г. Белореченска по производству минеральных удобрений, неорганических кислот (серной, фосфорной, азотной) и др. является одним из важнейших антропогенных факторов влияющих на почвенный покров Республики Адыгея. Вредные химические вещества, попадающие в атмосферу (оксиды

серы, фосфора, аммиак, кремнефторид натрия – Na₂SiF₆, пыль и др.); а также твердые отходы данного производства (серный кек, фосфогипс), которые в больших количествах накопились в районе этого завода не утилизируются в достаточной мере, нанося огромный ущерб почве и сохранению качества окружающей среды в этом регионе.

Целью работы явилось установление степени влияния антропогенных факторов на почвенный покров в районе химического завода г. Белореченска и РА.

Методы исследования и материалы.

В работе были использованы физико-химические методы исследования: гравиметрический (весовой), фотоколориметрический и биоиндикационные.

Материалы: почва, взятая в районе химического завода г. Белореченска на расстоянии 100, 500 и 1500 м.

Исследование почвы проводили в несколько этапов: отбор пробы, определение физико-химических характеристик почвы, биоиндикация.

Отбор пробы производили методом квартования. Операцию квартования проводили многократно, после чего среднюю пробу высушивали до воздушно-сухого состояния. Из полученного таким образом однородного материала готовили водную вытяжку.

Водную почвенную вытяжку использовали для определения кислотности почвы, а также для качественного и количественного определения химических элементов в почве (2,3).

Результаты исследования.

Результаты проведенных исследований почв, взятых в районе химического завода г. Белореченска (на расстоянии – 100м., 500м. от завода, и на прилегающих земельных участках ≈ 1500 м, используемых для выращивания сельхозпродукции.) представлены в табл. 1.

Полученные данные свидетельствуют о том, что все исследуемые почвы кислые (рН<7), это вызвано сильной засоленностью почвы в результате выбросов в атмосферу в этом районе: SO_2 , CO_3^{2-} , NH_3 , P_2O_5 и др., а также накоплением больших количеств твердых отходов этого производства, особенно фосфогипса.

Главные ионы основного солевого состава (СГ, SO_4^{2-} , Co_3^{2-} , NO_3^{-} и др.) табл. 1; обнаруживаются по характерным признакам химических реакций. В почве, взятой вблизи завода, отмечается повышенное содержание хлоридов и сульфатов, что связано с более высокой антропогенной нагрузкой на почву. Ниграт-анионы не обнаруживаются в пробе 1 и 2, однако, их высокое содержание отмечается в почве, взятой с огородных участков, что объясняется, по-видимому, внесением больших количеств минеральных удобрений.

Для определения карбонат-аниона $({\rm CO_3}^2)$ готовили солянокислую вытяжку. В пробах почв, взятых 100-500м от химического завода наблюдалось «вскипание» почвы, что свидетельствует о высоком содержании карбонатионов, т.е. это сильнокарбонатные почвы. В пробе, взятой с земельных участков, наблюдалось едва заметное «вскипание» (слабокарбонатная почва).

Высокое содержание ионов кальция Ca^{2+} связано с загипсовыванием почв твердыми отходами этого производства.

Качественное определение ионов, в частности по характеру осадка, позволяет определить количественное содержание этих ионов в мг. на 100мл. почвенной вытяжки (табл. 1).

Избыточные количества растворимых солей создают повышенную концентрацию ионов в почвенном растворе; что снижает плодородие и экологическое состояние почвы

Высокотоксичными веществами, накапливаемыми в почве, в результате антропогенного воздействия, являются тяжелые металлы. Содержание Zn2+, Pв2+ и Fe3+, в исследуемых пробах определяли фотоколориметрическим методом. Для этого готовили серию стандартных растворов с известной концентрацией, затем определяли их оптическую плотность на фотоколориметре и строили калибровочный график рис.1. Определив оптическую плотность почвенной вытяжки, по калибровочному графику находили концентрацию металла в ней.

Таблица 1 Качественное и количественное содержание ионов главного солевого состава в исследуемой почве

Исслед. об. почва	CI ⁻			SO ₄ ²⁻			NO ₃	CO ₃ ² -			Ca ²⁺			Al ³⁺		
≈100м от хим. завода	-	-	+	+	-	-	-	+	-	-	+	-	-	-	-	+
≈500м от хим. завода	-	-	+	-	+	-	-	+	-	-	-	+	-	-	-	+
Земельные участки ≈ 1500м	+	-	-	-	-	-	+	-	-	+	-	+	-	-	-	+
Характер осадка	большой хлопьевидный	сильная муть	опалесценция	большой быстрооседающий на дно	муть, появляющаяся сразу	медленно появляющаяся сла- бая муть	Синее окрашивание	сильнокарбонатные почвы	умереннокарбонатные почвы	слабокарбонатные почвы	большой, выпадающий сразу	муть, выделяющаяся при перемешивании	слабая муть, выделяющаяся при стоянии	выпадает осадок	Сильная муть	опалесценция
Содер. ио- нов в мг на 100 мл вы-	>10	5-10	1-0,1	50	10-1	1-0,5					50	10-1	1-0,1			

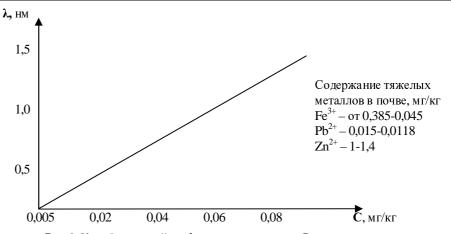


Рис.1. Калибровочный график для определения Рв

Объект Исследо-	2-е сутки		3-и сутки		4-e c	утки	5-е с	утки	%		
вания почва	Всхожесть									Всхожести	
	Кресс-	пшени-	Кресс-	пшени-	Кресс-	пшени-	Кресс-	пшени-	Кресс-	пше-	
	салат	ца	салат	ца	салат	ца	салат	ца	салат	ница	
≈100м от завода	-	-	15	4	21	15	26	38	52	76	
≈500м	-	-	18	26	23	35	28	48	56	96	
≈1500м	3	7	28	38	36	40	48	50	96	98	

Биоиндикационные исследования почвы

Проведенные исследования показывают, что содержание Zn^{2+} , PB^{2+} и Fe^{3+} в почве составляют 1-1,4; 0,015-0,0118; 0,385-045 мг/кг соответственно, рис1. табл.2. Содержание тяжелых металлов (Zn^{2+} , PB^{2+} и Fe^{3+}) в исследуемых пробах в целом находятся в пределах нормы, однако наблюдается снижение их содержания в почве по мере удаления от химического завода.

контроль

Известно, что почвы, загрязненные тяжелыми металлами очистить практически невозможно. Можно снизить подвижность токсических соединений и поступление их в растения, если засеять такие почвы быстрорастущими культурами, дающими большую массу. Такие культуры извлекают из почвы токсичные элементы, а затем собранный урожай подлежит уничтожению. И второй путь – повысить рН почв известкованием или добавляют большие дозы органических веществ, например, торфа (4,5).

Оценит состояние окружающей среды и уровень антропогенного воздействия можно с помощью биоиндикаторов.

Для характеристики почв используются индикаторные виды растений, которые могут свидетельствовать о водном режиме почв, их кислотности, обеспеченности элементами минерального питания, состояния плодородия. Для оценки степени антропогенного загрязнения исследуемой почвы мы использовали кресс-салат, как тестобъект и пшеницу, как неприхотливое растение к условиям произрастания. Кресс-салат – однолетнее овощное растение, обладающее повышенной чувствительностью к загрязнению почвы вредными химическими веществами. Этот биоиндикатор отличается быстрым прорастанием семян и почти 100% всхожестью, которая заметно уменьшается в присутствии загрязнителей. Результаты биоиндикационных исследований почв представлены в табл. 2, из которой следует, что процент всхожести, как кресс-салата, так и пшеницы заметно возрастает по мере удаления от химического завода.

Биоиндикационные исследования свидетельствует о том, что почва, взятая с разных участков различна: как по составу содержащихся в ней химических элементов, так по плодородию. Мониторинговые биоиндикационные исследования за состоянием растительности позволяют определить антропогенную нагрузку на опытных участках, выявить виды растений, чувствительных к неблагоприятным факторам.

Заключение и выводы

1. Результаты проведенных исследований почв, взятых в районе химического завода «Минудобрения» г. Белореченска и на прилегающих земельных участках, ис-

пользуемых для выращивания сельскохозяйственной продукции указывают на повышенное содержание ионов главного солевого состава (Cl , SO_4^{2-} , Ca^{2+} , CO_3^{2-} , NO_3^{-}), что связано с высокой антропогенной нагрузкой на почву в этом регионе.

- 2. Содержание тяжелых металлов в исследуемых почвах снижается по мере удаления их от химзавода.
- 3.О негативном влиянии отходов данного производства (SO_2 , CO_3^{2-} , NH_3 , P_2O_5 , Na_2SiF_6 и др.) на плодородие почв и окружающую среду в этом регионе свидетельствуют также и проведенные нами биоиндикационные исследования.

На наш взгляд оценка степени влияния антропогенных факторов на почвенный покров и здоровье населения в этом регионе может быть выявлена в результате проведения следующих мероприятий:

- установление соответствия предельно допустимых концентраций (ПДК) химических веществ в различных средах внешней среды вода, воздух, почва, пища и т.п.
- систематическое проведение экологического Мониторинга концентрации химических веществ в экосистемах (почва, вода, воздух) биосферы.
- проведение биоиндикации, т.е. определение содержания вредных веществ с помощью растений и животных от простейших до позвоночных (т.к. это самые совершенные «приборы»).

Проведение таких мероприятий позволит получить данные о суммарной нагрузке антропогенных факторов на окружающую среду Республики Адыгея, а также углубить представление о причинно-следственных связях в оценке степени воздействия неблагоприятных экологических факторов на здоровье населения в этом регионе.

Примечания:

- Государственный доклад. О содержании окружающей природной среды РА. 200-2004г. Министерство природных ресурсов Российской Федерации; управление природных ресурсов и охрана окружающей среды МПР России по Р.А.; под общ. Ред. Г.Г. Козменко. Майкоп: Качество 2005 170 с.
- 2. Экологический мониторинг: Учебно-методическое пособие / Под ред. Т.Я. Ашихминой.- Москва 2005 416с. («Gaude-amus»).
- Федорова А.И. Практикум по экологии и охране окружающей среды. Учебное пособие для студентов высших учебных заведений. А.И. Федорова, А.Н. Никольская – Владос, 2003. – 288с.
- 4. Экологическая химия, пер. с нем. / Под ред. Ф. Корте М.: Мир, 1997. 396с.
- Экологическое образование. Научно-методический журнал. Москва. №4: 2001г.