Исследование зависимости линейной поляризации излучения заряда в электромагнитном поле плоской волны от ее интенсивности и поляризации

(Рецензирована)

Аннотация

Исследована мгновенная степень линейной поляризации глобального излучения заряда в поле эллиптически поляризованной электромагнитной волны как функция трех переменных: времени, интенсивности внешней волны и ее поляризации. Средняя по времени степень линейной поляризации глобального излучения исследована в зависимости от поляризации и интенсивности внешней волны. Вектор поляризации ориентирован вдоль направления распространения внешней волны.

Ключевые слова: вектор поляризации, степень линейной поляризации, σ и π компоненты излучения, мощность глобального излучения.

Задача о движении заряда в поле эллиптически поляризованной электромагнитной волны представляет интерес в связи с общностью постановки [1, 2]. Меняя параметр поляризации волны можно рассмотреть большой спектр частных случаев, включая линейную и круговую поляризации. Кроме того, при исследовании излучения можно различным образом ориентировать вектор поляризации.

Пусть плоская эллиптически поляризованная электромагнитная волна распространяется вдоль оси *z* лабораторной системы координат со скоростью *c*. Вектор напряженности электрического поля волны имеет вид:

$$\vec{E} = \sqrt{2}E_0 \left(\vec{i} \cos\psi \cos\omega\xi + \vec{j} \sin\psi \sin\omega\xi \right), \tag{1}$$

где E_o – амплитуда напряженности электрического поля; ω - частота волны; ψ - параметр, характеризующий поляризацию волны ($0 \le \psi \le \pi/2$), ξ - момент излучения.

Интенсивность волны будем характеризовать параметром $\gamma = \frac{eE_0}{\omega cm}$. При $\gamma >> 1$ волна считается сильной, при $\gamma << 1$ - слабой.

В электромагнитном поле заданной плоской волны заряд *е* движется по определенной траектории. С зарядом удобно связать мгновенно сопутствующую систему координат (x', y', z'), начало которой совпадает с той точкой лабораторной системы координат (x, y, z), в которой находился заряд в момент излучения ξ . Положение заряда в лабораторной системе координат задается радиус – вектором \vec{r}

(рис. 1). Точка А, в которой в момент времени t наблюдается излучение заряда, удале-

на на большое расстояние $R(\xi)$ от заряда по сравнению с длиной волны излучения. Моменты излучения ξ и наблюдения t связаны соотношением: $\xi = t - R(\xi)/c$.

При изучении линейной поляризации излучения вектор напряженности электрического поля излучения обычно раскладывают по двум ортогональным единичным ортам линейной поляризации [4, 5]:

$$\vec{E} = E_2 \vec{\ell}_2 + E_3 \vec{\ell}_3, \qquad (2)$$

где $\vec{\ell}_{2,3}$ связаны с *произвольно ориентированным* единичным вектором поляризации \vec{j} и единичным вектором $\vec{n} = \frac{\vec{R}(\xi)}{R(\xi)}$, направленным от заряда к точке наблюдения т.о.:

$$\vec{\ell}_2 = \frac{\left[\vec{j}\vec{n}\right]}{\sqrt{1 - \left(\vec{n}\vec{j}\right)^2}}, \quad \vec{\ell}_3 = \frac{\vec{n}\left(\vec{n}\vec{j}\right) - \vec{j}}{\sqrt{1 - \left(\vec{n}\vec{j}\right)^2}} = \left[\vec{\ell}_2 \vec{n}\right], \quad \vec{n} = \left[\vec{\ell}_3 \vec{\ell}_2\right], \quad \left(\vec{n}\vec{\ell}_3\right) = \left(\vec{n}\vec{\ell}_2\right) = \left(\vec{\ell}_2 \vec{\ell}_3\right) = 0. \quad (3)$$

Компоненты E_2 и E_3 определяют соответственно σ и π компоненты излучения,

 σ - компонента характеризует проекцию \vec{E} на плоскость, ортогональную вектору \vec{j} .

Угловое распределение мгновенной мощности излучения определяется выражением [3, с.258]:

$$\frac{dW}{d\Omega} = \frac{c}{4\pi} \vec{E}^2 R^2 \left(l - \left(\vec{\beta} \vec{n} \right) \right), \qquad (4)$$

где $\vec{\beta}(\xi) = \vec{v}(\xi) / c$, $\vec{v}(\xi)$ - скорость заряженной частицы.

Для описания поляризации излучения вводится специальная величина – степень линейной поляризации (далее - СЛП) *р* :

$$p = \frac{W_2 - W_3}{W_2 + W_3} = \frac{W_2 - (W - W_2)}{W} = \frac{2W_2}{W} - 1,$$
(5)

где $W_{2,3}$ - мгновенные мощности компонент глобального излучения, полученные из (4) интегрированием по телесному углу Ω [2]. Из (5) следует, что значения СЛП находятся в пределах [-1,1].

Мгновенная мощность глобального излучения, очевидно, не зависит от ориентации вектора поляризации \vec{j} и равна [7]:

$$W = W_2 + W_3 = \frac{2e^2}{3c^3} \frac{w^2 (l - \beta^2) + (\vec{w}\vec{\beta})^2}{(l - \beta^2)^3},$$
(6)

где \vec{w} - ускорение заряда.

Как следует из (3) и (5), мощность σ - компоненты и СЛП существенно зависят от ориентации вектора поляризации \vec{j} .

Вектор поляризации излучения \vec{j} направим вдоль направления распространения внешней волны:

$$\dot{i} = (0,0,1). \tag{7}$$

Для этого выбора вектора поляризации в работе [6] приведены уравнения движения $\vec{r}(\xi)$, полученные в системе отсчета, в которой частица в среднем покоится $(\vec{\beta}_{\perp} = \vec{\beta}_z = 0)$. Данный выбор системы отсчета дает дополнительную связь между интерралом движения $\alpha = \frac{1 - \beta_z}{\sqrt{1 - \beta^2}} = const$ и параметром интенсивности внешней волны γ :

$$\alpha^2 = l + \gamma^2 \,. \tag{8}$$

Полученными в работе [6] точными аналитическими выражениями для мгновенной W_2 и средней по времени $\overline{W_2}$ мощности σ - компоненты глобального излучения мы воспользуемся для нахождения мгновенной $p = p(\gamma, \psi, x)$ и средней по времени $\overline{p} = \overline{p}(\gamma, \psi)$ СЛП глобального излучения и проведем анализ полученных функциональных зависимостей.

Мгновенная мощность σ - компоненты излучения для $\vec{j} = (0,0,l)$ имеет вид [6]:

$$W_{2} = \frac{e^{2}}{12c} \cdot \frac{\alpha^{2}}{CK \cdot CK0^{3}} \cdot \left(A0 + A1\cos x + A2\cos^{2} x + A3\cos^{3} x + A4\cos^{4} x + A5\cos^{5} x\right), \quad (9)$$

где введены обозначения:
$$A0 = 2\alpha^2 (7\alpha^8 - 8\alpha^6 + \alpha^4 - 6\eta^2\alpha^4 - 2\eta^2\alpha^2 - 2\eta^2);$$

 $A1 = \eta\alpha^2 (35\alpha^6 - 52\alpha^4 + 5\alpha^2 - 30\alpha^2\eta^2 - 4\eta^2); \quad A2 = 2\alpha^2\eta^2 (13\alpha^4 + 4 - 29\alpha^2 - 12\eta^2);$
 $A3 = \eta^3 (-28\alpha^2 + 2\alpha^4 + 1 - 6\eta^2); \quad A4 = -2\eta^4 (3 + 2\alpha^2); \quad A5 = -\eta^5;$

$$\eta = -\gamma^2 \cos(2\psi); \ CK = 2\alpha^2 + \eta \cos x; \ CK0 = \alpha^2 + \eta \cos x.$$

Мощность глобального излучения *W* в нашем случае равна:

$$W = \frac{2e^2\omega^2\alpha^2}{3c} \cdot \left(\gamma^2 - \eta\cos x\right). \tag{10}$$

Подставляя W_2 и W в выражение для СЛП (5), получаем зависимость мгновенной СЛП от интенсивности γ , поляризации внешней волны ψ и времени:

$$p = \frac{1}{4} \cdot \frac{\left(P0 + P1\cos x + P2\cos^2 x + P3\cos^3 x + P4\cos^4 x + P5\cos^5 x\right)}{CK \cdot CK0^3 \cdot \left(\gamma^2 - \eta\cos x\right)}, \text{ где}$$
(11)

$$P0 = 2\alpha^2 \left(3\alpha^8 - 4\alpha^6 + \alpha^4 - 6\eta^2\alpha^4 - 2\eta^2\alpha^2 - 2\eta^2\right);$$

$$P1 = \eta\alpha^2 \left(15\alpha^6 - 24\alpha^4 + 5\alpha^2 - 30\alpha^2\eta^2 - 4\eta^2\right); P2 = 2\alpha^2\eta^2 \left(9\alpha^4 - 11\alpha^2 + 4 - 12\eta^2\right);$$

$$P3 = \eta^3 \left(18\alpha^4 - 8\alpha^2 + 1 - 6\eta^2\right); P4 = 2\eta^4 \left(6\alpha^2 - 1\right); P5 = 3\eta^5.$$

Фазовую переменную $x = 2\omega\xi$ будем для краткости называть фазой, определяющей положение заряда на орбите в момент времени ξ .

Проверка выражения (11) для частного случая волны круговой поляризации ($\psi = \pi/4$) приводит к известному в теории синхротронного излучения результату:

$$p = \frac{3}{4} - \frac{1}{4(1+\gamma^2)},$$
 (12)

т.е., мгновенная глобальная СЛП не зависит от времени (от положения на орбите) и в нерелятивистском пределе $p_{\gamma \to 0} \to 1/2$, а в релятивистском пределе $p_{\gamma \to \infty} \to 3/4$.

Как следует из выражения (10) для мгновенной мощности глобального излучения, при движении электрона в поле линейно поляризованной электромагнитной волны в определенные моменты времени излучение отсутствует, т.к. в эти моменты времени ускорение заряда равно нулю. Для линейно поляризованной волны с $\psi = 0$ мгновенная мощность глобального излучения принимает нулевые значения при $x = \pi + 2\pi m$, а для линейно поляризованной волны с $\psi = 0 + 2\pi m$ ($m \in N$):

$$W = \frac{2e^2\alpha^2}{3c} \cdot (\gamma^2 - \eta \cos x) = 0 \implies (1 + \cos(2\psi)\cos(x)) = 0 \implies \begin{cases} \psi = 0; \ x = \pi; \\ \psi = \pi/2; \ x = 0. \end{cases}$$

В указанных точках понятие СЛП теряет смысл.

На рисунках 2 -4 представлены зависимости мгновенной СЛП от времени p = p(x) для внешней волны конкретной поляризации и интенсивности.

Рис. 2. Зависимость мгновенной СЛП глобального излучения заряда от положения на орбите для различных значений параметра интенсивности γ внешней линейно поляризованной (ψ = 0) электромагнитной волны. При x = π заряд не излучает.

Рис. 3. Зависимость мгновенной СЛП глобального излучения заряда от положения на орбите для различных значений параметра интенсивности γ внешней линейно поляризованной волны ($\psi = \pi/2$) электромагнитной волны. При x = 0, 2π заряд не излучает.

Рис. 4. Зависимость мгновенной СЛП глобального излучения заряда от положения на орбите для различных значений параметра интенсивности γ внешней эллиптически поляризованной (ψ = π / 8) электромагнитной волны.

В нерелятивистском пределе $\gamma \to 0$ выражение (11) для СЛП после разложения в ряд по малому параметру $q = \sqrt{\gamma^2 / (\gamma^2 + I)}$ с точностью до членов второго порядка малости принимает вид:

$$p = \frac{1}{2} + \frac{q^2 \left\langle 1 + 9\cos^2(2\psi)\cos^2(x) - 10\cos^2(2\psi) \right\rangle}{4 \left(1 + \cos(2\psi)\cos(x) \right)},$$
(13)

откуда следует, что независимо от поляризации внешней волны мгновенная СЛП стремится к значению $p_{\gamma \to 0} = 0.5$, что хорошо видно на рисунках 2 -4 при $\gamma = 0.01$.

В таблице 1 приведены предельные значения мгновенной СЛП в «контрольных» точках (ψ , x), вычисленные по формуле (13) при $\gamma = 0.01$, а также результаты вычисления СЛП по точной формуле (11).

			Ta	блица 1
Ψ	0	0	$\pi/2$	$\pi/2$
x	0	π	0	π
$p_{\gamma ightarrow 0}$	1	$\frac{1}{2} - \frac{9q^2}{2} = 0.49955$ ($\psi = 0, x \to \pi$)	$\frac{1}{2} - \frac{9q^2}{2} = 0.49955$ ($\psi = \pi/2, x \to 0$)	1
по формуле (13)	$\frac{-}{2}$ +0·q ²	$\frac{1}{2} + \frac{q^2}{2} = 0.50005$	$\frac{1}{2} + \frac{q^2}{2} = 0.50005$	$\frac{-}{2}$ +0·q
		$(\psi \rightarrow 0, x = \pi)$	$(\psi \rightarrow \pi/2, x=0)$	
n		0.49955	0.49955	
<i>р_{γ→0}</i> по формуле (11)	0.5(0)	$(\psi = 0, x = 0.99\pi)$	$(\psi = \pi/2, x = 0.01)$	0.5(0)
	0.5(0)	0.50005	0.50005	0.5(0)
		$(\psi = 0.01, x = \pi)$	$(\psi = 0.99\pi/2, x = 0)$	

Графики зависимости мгновенной СЛП от положения на орбите p(x) в нерелятивистском пределе при $\gamma = 0.01$ для различных значений поляризации внешней волны приведены на рисунке 5.

В релятивистском пределе ($\gamma \rightarrow \infty$) СЛП (11) после разложения в ряд по малому параметру $1/\gamma^2$ с точностью до членов первого порядка малости принимает вид:

Рис. 5. Зависимость мгновенной СЛП глобального излучения заряда от положения на орбите в пределе слабой волны. Кривая с номером n соответствует внешней волне с поляризацией ψ_n :

Номер кривой	1	2	3	4	5	6	7	8	9	10	11	12
ψ_n	0	$\frac{\pi}{256}$	$\frac{\pi}{32}$	$\frac{3\pi}{32}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$	$\frac{5\pi}{16}$	$\frac{3\pi}{8}$	$\frac{7\pi}{16}$	$\frac{63\pi}{128}$	$\frac{\pi}{2}$

$$p = p0 + p1/\gamma^{2},$$
(14)

$$\Gamma_{\text{T}}e \quad p0 = \frac{3}{4} - \frac{3}{2} \cdot \frac{\cos^{2}(2\psi) \cdot \sin^{2}(x)}{\langle 1 - \cos^{2}(2\psi) \cos^{2}(x) \rangle},$$

$$p1 = \frac{\cos(x) \langle 6\cos^{3}(2\psi) - \cos(2\psi) \rangle + \cos^{2}(2\psi) \langle 6\cos^{2}(x) - 8 \rangle - 5\cos^{3}(2\psi) \cdot \cos^{3}(x) + 2}{4 \langle 3\cos(2\psi)\cos(x) - 2 + \cos^{2}(2\psi)\cos^{2}(x) - 3\cos^{3}(2\psi)\cos^{3}(x) + \cos^{4}(2\psi)\cos^{4}(x) \rangle}.$$

Из (14) следует, что для волны любой поляризации, кроме линейной, в моменты x = 0 и $x = \pi$ мгновенное значение СЛП равно $p_{\gamma \to \infty} = 3/4$. Это видно, например, на рисунке 4 для эллиптически поляризованной волны с параметром $\psi = \pi/8$.

Предельные значения мгновенной СЛП в точках (ψ, x) = (0, π) и (ψ, x) = ($\pi/2, 0$), вычисленные по формуле (14), приведены в таблице 2.

Формула (14) не применима для двух пар значений (ψ , x): (0, 0) и ($\pi/2$, π). Предельные значения мгновенной СЛП в этих точках также приведены в таблице 2.

Для оценки надежности результатов, полученных по формуле (14), в таблице 2 приведены результаты вычисления СЛП по точной формуле (11) при $\gamma = 100$.

			Табл	ица 2
Ψ	0	0	$\pi/2$	$\pi/2$
x	0	π	0	π
		$-\frac{3}{4} + \frac{11}{24\gamma^2} = -0.74995$	$-\frac{3}{4} + \frac{11}{24\gamma^2} = -0.74995$	
$p_{\gamma \to \infty}$	1_0	$(\psi = 0, x \to \pi)$	$(\psi = \pi/2, x \rightarrow 0)$	1_0
по формуле (14)	$\frac{1}{2}$ $\frac{1}{\gamma^2}$	$\frac{3}{4} - \frac{1}{8\gamma^2} = +0.74999$	$\frac{3}{4} - \frac{1}{8\gamma^2} = +0.74999$	$\frac{1}{2}$ $\frac{1}{\gamma^2}$
		$(x = \pi, \psi \to 0)$	$(x=0, \psi \rightarrow \pi/2)$	
		-0.74995	-0.74995	
$p_{\gamma \to \infty}$ по формуле	0.5(0)	$(\psi = 0, \ x = 0.99\pi)$	$(\psi = \pi/2, x = 0.01)$	0.5(0)
	0.3(0)	+ 0.74999	+ 0.74999	0.3(0)
(11)		$(x = \pi, \psi = 0.01)$	$(x=0, \psi=0.99\pi/2)$	

Рис. 6. Зависимость мгновенной СЛП глобального излучения заряда от положения на орбите в пределе сильной волны. Кривая с номером n соответствует внешней волне с поляризацией

ψ	<i>n</i> :											
Номер кривой	1	2	3	4	5	6	7	8	9	10	11	12
ψ_n	0	$\frac{\pi}{64}$	$\frac{\pi}{16}$	$\frac{3\pi}{32}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$	$\frac{5\pi}{16}$	$\frac{3\pi}{8}$	$\frac{7\pi}{16}$	$\frac{30\pi}{64}$	$\frac{\pi}{2}$

Графики зависимости мгновенной СЛП от времени в релятивистском пределе при $\gamma = 100\,$ для различных поляризаций внешней волны приведены на рисунке 6.

Все указанные в таблицах 1 и 2 особенности поведения ЛСП $p = p(\gamma, \psi, x)$ вблизи контрольных точек (ψ , x): (0, 0), (0, π), ($\pi/2, 0$) и ($\pi/2, \pi$) хорошо видны на графиках (рис. 5 и 6).

Размах значений мгновенной СЛП глобального излучения при изменении интенсивности волны иллюстрирует рисунок 7.

Рис. 7. Зависимость мгновенной СЛП глобального излучения заряда от интенсивности внешней волны. Характеристики кривой с номером n приведены ниже в таблице.

<i>n</i> – 1:	$\int (\psi = 0, \ x = 0);$	n = 2:	$(\psi = \pi/32, x=0).$
n=1.	$\Big \big(\psi = \pi / 2, \ x = \pi \big).$	n = 3:	$(\psi = \pi / 8, x = 0).$
<i>n</i> = 4 :	$\begin{cases} (\psi = 0.999\pi / 2, x = 0); \\ (\psi = 0, x = 0.999\pi). \end{cases}$	n = 6:	$(\psi = \pi/2, x = 7\pi/8).$
n = 5:	$\begin{cases} (\psi = \pi / 2, x = 0.001); \\ (\psi = 0.001, x = 0.001); \end{cases}$	n = 7:	$(\psi = \pi/2, x = 15\pi/16).$
	$\left(\left(\psi = 0.001, \ x = \pi \right) \right).$	n = 8:	$\left(\psi=\pi/2, \ x=31\pi/32\right)$

Качественный характер зависимости СЛП от поляризации волны в точках, близких к контрольным точкам (ψ , x) = ($\pi/2$, 0) и (ψ , x) = (0, π) сохраняется в волне любой интенсивности (рис. 8 и 9), но интервал значений СЛП существенно различен в нерелятивистском и релятивистском случаях.

Рис. 8. Зависимость мгновенной СЛП глобального излучения от поляризации внешней волны в момент x = 0.001 в нерелятивистском $\gamma = 0.01$ и релятивистском $\gamma = 10$ пределах.

Рис. 9. Зависимость мгновенной СЛП глобального излучения от поляризации внешней волны в момент x = 0.999π в нерелятивистском γ = 0.01 и релятивистском γ = 10 пределах.

Наконец, отметим еще одну особенность функциональной зависимости СЛП от поляризации внешней волны, которая наглядно представлена на рисунке 10. Здесь приведены зависимости $p(\psi)$ в различные моменты времени (для различных положений заряда на орбите) для нескольких значений интенсивности внешней волны. Видим, что в момент x = 0 (а также $x = \pi$) функция $p(\psi)$ является монотонной. Заметим, что этот вывод справедлив и в нерелятивистском пределе: при $\gamma = 0.1$ СЛП изменяется от $p_{\psi=0} = 0.500$ до $p_{\psi=\pi/2} = 0.505$. При всех иных значениях x функция $p(\psi)$ не является монотонной. В момент $x = \pi/2$ функция $p(\psi)$ является симметричной.

Рис. 10. Зависимость мгновенной СЛП глобального излучения заряда от поляризации внешней волны заданной интенсивности в фиксированный момент времени.

Теперь перейдем к обсуждению средней за оборот СЛП глобального излучения, которая определяется выражением:

$$\overline{p} = \frac{\overline{W}_2 - \overline{W}_3}{\overline{W}_2 + \overline{W}_3} = \frac{2\overline{W}_2}{\overline{W}} - 1.$$
(15)

Средняя по времени мощность глобального излучения имеет вид [6]:

$$\overline{W} = \frac{2e^2\omega^2\gamma^2}{3c} \left\{ \alpha^2 - \frac{\gamma^2\cos^2(2\psi)}{4} \right\}.$$
(16)

Точные аналитические расчеты для случая $\vec{j} = (0, 0, 1)$ дают для средней по времени σ - компоненты мощности глобального излучения \overline{W} , следующее выражение [6]:

$$\overline{W}_{2} = \frac{e^{2}\omega^{2}}{24c} \left\{ 8\alpha^{4} - \frac{13\eta^{2}}{2} - 10\alpha^{2} + 1 + \frac{\alpha^{2} + 6\alpha^{2}(\alpha^{4} - \alpha^{2} - \eta^{2})}{(\alpha^{4} - \eta^{2})^{\frac{1}{2}}} - \frac{2\alpha^{2}\eta^{2}}{(\alpha^{4} - \eta^{2})^{\frac{3}{2}}} \right\}.$$
 (17)

Подставляя W из (16) и W_2 из (17) в выражение для \overline{p} (15), получаем:

$$\overline{p} = \frac{1}{\left(4\alpha^{2}\gamma^{2} - \eta^{2}\right)} \left[\frac{\left(2 - 4\alpha^{2} - 9\eta^{2}\right)}{4} + \frac{\left(\alpha^{2} - 6\alpha^{4}\right)}{2\sqrt{\alpha^{4} - \eta^{2}}} - \frac{\alpha^{2}\eta^{2}}{\left(\alpha^{4} - \eta^{2}\right)^{3/2}} + 3\alpha^{2}\sqrt{\alpha^{4} - \eta^{2}} \right].$$
(18)

Для волны круговой поляризации ($\eta = 0$) средняя по времени СЛП (18) равна:

$$\overline{p} = \frac{3}{4} - \frac{1}{4(1+\gamma^2)}.$$
(19)

Предельные значения СЛП (19) в нерелятивистском ($\bar{p}_{\gamma \to 0} \to 1/2$) и релятивистском ($\bar{p}_{\gamma \to \infty} \to 3/4$) пределах согласуются с результатами работы [7]. Как видим, в случае круговой поляризации внешней электромагнитной волны мгновенная (12) и средняя (19) СЛП глобального излучения совпадают для любых значений γ . Этот вывод очевиден из общих соображений и позволяет судить о надежности результатов (11) и (18).

На рисунке 11 представлена зависимость $\overline{p}(\psi)$ для различных интенсивностей внешней волны. Видим, что функция $\overline{p}(\psi)$ является немонотонной и симметричной. Насколько быстро меняется угол наклона касательной к графику $\overline{p}(\psi)$ вблизи граничных значений параметра ψ с ростом интенсивности волны видно из рисунка 11 б.

Рис.11. Зависимость средней СЛП глобального излучения \overline{p} (рис.а) и производной $d\overline{p}/d\psi$ (рис.б) от поляризации внешней волны для различных значений интенсивности γ .

Значения параметра поляризации $(0 \le \psi \le \pi/2)$ можно разделить на три области: при фиксированном значении ψ СЛП может возрастать с ростом интенсивности внешней волны, может убывать и может иметь экстремум. На рисунке 11 а области значений ψ , соответствующие немонотонному характеру зависимости $\overline{p}(\gamma)|_{\psi}$, выделены пунктирными линиями: $(0.39 \le \psi \le 0.56)$ и $(1.01 \le \psi \le 1.18)$. Значения параметра интенсивности волны γ , при которых функция $\overline{p}(\gamma)$ имеет минимум, а также минимальные значения самой функции $\overline{p}(\gamma)$ приведены в таблице 3. На рисунке 12 область кривых $\overline{p}(\gamma)$, имеющих минимум при некотором значении γ_m , помечена звездочкой.

					Таблица З
Ψ	γ_m	$\overline{p}(\psi, \gamma_m)$	Ψ	γ_m	$\overline{p}(\psi, \gamma_m)$
0.3900	23.07	0.2783	0.5600	0.2032	0.4998
$\pi/8 = 0.3927$	10.29	0.2846	1.010	0.1863	0.4998
$\pi/6 = 0.5236$	0.6628	0.4864	1.180	15.66	0.2802

Рис. 12. Зависимость средней СЛП глобального излучения от интенсивности волны для различных значений параметра поляризации волны.

В нерелятивистском пределе поведение СЛП $\bar{p}_{\gamma\to 0} = \bar{p}(\psi, \gamma)$ описывается приближенной формулой, полученной при разложении (18) в ряд по малому параметру *q*:

$$\overline{p}_{\gamma \to 0} = \frac{1}{2} + \left(\frac{1}{4} - \frac{11}{8} \cdot \cos^2(2\psi)\right) q^2 \,. \tag{20}$$

В таблице 4 сопоставлены значения средней СЛП, полученные по точной (18) и приближенной (20) формулам при различных значениях интенсивности волны γ . Жирным шрифтом выделены те значения средней СЛП, которые с точностью до 5 значащих цифр совпали по результатам использования точной и приближенной формул.

γ	Ψ	<i>0, π</i> / 2	$\pi/3$	$\pi/4$	$\pi/8$
0.2	$\overline{p}_{\gamma \to \infty}$	0.45673	0.49639	0.50962	0.48317
0.01	по формуле	0.49989	0.49999	0.50003	0.49996
0.001	(23)	0.50000	0.50000	0.50000	0.50000
0.2	$\overline{p}_{\gamma \to \infty}$	0.45738	0.49666	0.50962	0.483363
0.01	по формуле	0.49990	0.49999	0.50002	0.49996
0.001	(21)	0.50000	0.50000	0.50000	0.50000

Таблица 4

В релятивистском пределе для линейно поляризованной волны ($\psi = 0, \pi/2$) средняя СЛП глобального излучения с точностью до членов первого порядка малости имеет вид:

$$\overline{p}_{\gamma \to \infty} = \frac{9}{4} - \frac{9}{4 - \cos^2(2\psi)} + \frac{1}{\gamma} \frac{\left(6 - \cos^2(2\psi)\right)}{2\sqrt{2}\left(4 - \cos^2(2\psi)\right)} = -\frac{3}{4} + \frac{5}{6\sqrt{2}} \cdot \frac{1}{\gamma}.$$
(21)

Для остальных значений параметра поляризации ($0 < \psi < \pi/2$) средняя СЛП глобального излучения с точностью до членов второго порядка малости равна:

$$\overline{p}_{\gamma \to \infty} = \frac{9}{4} + \frac{3\sin(2\psi) - 9}{4 - \cos^2(2\psi)} + \frac{1}{\gamma^2} \left(\frac{3\sin(2\psi) - 1}{4 - \cos^2(2\psi)} \right).$$
(22)

В таблице 5 приведены предельные значения средней СЛП, вычисленные по формулам (21) и (22) для различных значений интенсивности волны γ . Здесь же приведены результаты вычисления средней СЛП по точной формуле (18), которые позволяют оценить надежность результатов, полученных по формулам (21) и (22). Жирным шрифтом выделены те значения СЛП, которые с точностью в 5 значащих цифр совпали по результатам использования точной (18) и приближенных (21) и (22) формул.

Таблица 5	5
-----------	---

Toomus 6

γ	Ψ	<i>0, π</i> / 2	$\pi/3$	π / 4	$\pi/8$
10	$\overline{p}_{\gamma ightarrow \infty}$	- 0.69107	0.54708	0.75500	0.28787
100	по формулам	- 0.74411	0.54286	0.75005	0.28469
1000	(24) и (25)	- 0.74941	0.54282	0.75000	0.28466
10	$\overline{p}_{\nu \to \infty}$	- 0.68468	0.54132	0.74752	0.28464
100	по формуле	- 0.74404	0.54281	0.74998	0.28466
1000	(21)	- 0.74941	0.54282	0.75000	0.28466

В таблице 6 приведены предельные значения СЛП, вычисленные по формуле (22) для значений параметра поляризации ψ , использованных при построении графиков, приведенных на рисунке 12. Видно, что приведенные в таблице 6 значения СЛП хорошо согласуются с рисунком 12.

			Таолица О
ψ	$\overline{p}_{\gamma \to \infty} = \frac{9}{4} + \frac{3\sin(2\psi) - 9}{4 - \cos^2(2\psi)}$	Ψ	$\overline{p}_{\gamma \to \infty} = \frac{9}{4} + \frac{3\sin(2\psi) - 9}{4 - \cos^2(2\psi)}$
$\frac{\pi}{4} = 0.785$	$\frac{3}{4}$	$\frac{\pi}{8} = 0.3927$	0.28466
0.56	0.59661	0.20	-0.23497
$\frac{\pi}{6} = 0.5236$	0.5428	$0, \frac{\pi}{2}$	$\overline{p}_{\gamma \to \infty} = -\frac{3}{4}$

Как видно из рис. 12, в слабой волне поляризация не влияет на среднюю по времени СЛП глобального излучения заряда. В этом случае при всех значениях ψ излучается преимущественно σ - компонента и $\bar{p} = 0.5$. В сильной волне ($\gamma >> 1$) поляризация существенно влияет на среднюю СЛП. Например, в поле линейно поляризованной волны заряд излучает преимущественно π - компоненту, а при $\gamma \approx 0.974$ излучение не поляризовано и $\bar{p} = 0$. Для волны эллиптической поляризации, например, при $\psi = \pi / 3$ или $\psi = \pi / 6$ СЛП при изменении интенсивности волны изменяется незначительно вблизи значения $\bar{p} \sim 0.5$ и при любом значении параметра γ излучается преимущественно σ - компонента. А, например, при значениях $\psi = 0.282$ или $\psi = 1.288$ излучение в релятивистском пределе не поляризовано вовсе ($\bar{p} = 0$)!

Таким образом, мгновенная $p(\gamma, \psi, x)$ и средняя по времени $\overline{p}(\gamma, \psi)$ степени линейной поляризации глобального излучения заряда в общем случае различны и существенно зависят от интенсивности и поляризации внешнего электромагнитного поля волны.

Автор благодарит профессора Томского госуниверситета В.Г. Багрова за интерес к работе и полезные обсуждения.

Примечания:

- Багров В.Г. Некоторые вопросы классической теории излучения / В.Г. Багров, Ю.А. Маркин // Изв. вузов. Физика. - 1967. -Вып. 5. – С. 37-42.
- Багров В. Г. Линейная поляризация излучения произвольно движущегося заряда / В.Г. Багров, Ю.И. Клименко // Вестник Московского университета. - 1969. - №3. -С. 104-107.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 2. Теория поля. - М.: Наука, 1988. – 512 с.
- Синхротронное излучение: Сб. статей / Под ред. А.А. Соколова и И.М. Тернова. - М.: Наука, 1966. - 228 с.

- 5. Теория излучения релятивистских частиц / Под ред. В.А. Бордовицына. М.: ФИЗМАТЛИТ, 2002. 576 с.
- 6. Жукова И.Н. Некоторые особенности линейной поляризации излучения заряда в электромагнитном поле плоской волны // Труды ФОРА – 2005. - №10. – С. 36-43.
- 7. Тернов И. М. Излучение релятивистского заряда в электромагнитном поле плоской волны / И.М. Тернов, В.Г. Багров, А.М. Хапаев // Изв. вузов. Физика. – 1967. -Вып. 8. – С. 77-84.