УДК 512.55 ББК 22.144.3 К 59

Козлов В.А.

Кандидат физико-математических наук, доцент, зав. кафедрой математического анализа Армавирского государственного педагогического университета, e-mail: shagin196@ yandex.ru

Построение систем образующих кольца $K^*(G/H)$ одной серии однородных пространств G/H^*

(Рецензирована)

Аннотация

Системы образующих $K^*(SU(N)/SU(2))\otimes Q$ и их характеры Черна построены в явном виде для однородных пространств SU(N)/SU(2), в которых группа SU(2) дана тензорным произведением представлений небольших размерностей.

Ключевые слова: K -теория, кольцо $K^*(X)$, группа Ли, однородное пространство, представление группы Ли, характер Черна, операции Адамса.

Kozlov V.A.

Candidate of Physics and Mathematics, Assistant Professor, Head of Mathematical Analysis Department of the Armavir State Pedagogical University, e-mail: shagin196@ yandex.ru

Construction of ring generating systems $K^*(G/H)$ of one series homogeneous spaces G/H

Systems of $K^*(SU(N)/SU(2)) \otimes Q$ generators and their Chern characters are constructed in an explicit form for homogeneous spaces SU(N)/SU(2) in which group SU(2) is given by tensor product of small dimension representations.

Key words: K-theory, ring $K^*(X)$, Lie group, homogeneous space, Lie group representation, Chern characters, Adams's operations.

1. Образующие в кольце $K^*(SU(N)/SU(2)) \otimes Q$

В [1] и [2] предложен алгоритм, позволяющий строить элементы группы $K^1(SU(N)/SU(2))\otimes Q$, в случае, когда компактная группа SU(2) вложена в SU(N) тензорным произведением своих неприводимых представлений, то есть вполне приводимым представлением. Там же доказано, что из этих элементов можно выбрать систему образующих всего кольца $K^*(SU(N)/SU(2))\otimes Q$. Доказано также, что характеры Черна этих представлений нетривиальны. Эти результаты носят характер «теоремы существования», причем, предполагают определенные ограничения.

Здесь строятся системы образующих и их характеры Черна в явном виде уже без ограничений, что позволяет надеяться снять ограничения и в общем случае.

 $^{^*}$ Публикуется при финансовой поддержке РФФИ и администрации Краснодарского края. Проект № 09-01-96512 р_юг_а.

Основные результаты [1] и [2] опишем в следующей форме.

Пусть стационарная группа SU(2) дана представлением $\varphi = \varphi_p \otimes \varphi_l$, где φ_p и φ_l – неприводимые представления группы SU(2) размерностей p+1 и q+1 соответственно. Обозначим $k_0 = p+l$.

Теорема 2. Элементы $\gamma(\theta_0), \gamma(\theta_1), \cdots, \gamma(\theta_{N-3})$ при нечетном k_0 и $\gamma(\theta_0'), \gamma(\theta_1'), \cdots, \gamma(\theta_{N-3}')$ при четном k_0 являются образующими в кольце $K^*\big(SU(N)/SU(2)\big)\otimes Q$, где группа SU(2) дана в представлении $\varphi=\varphi_p\otimes\varphi_l$.

В теореме 1 θ_0 , θ_1 , \cdots , θ_{N-3} и θ_0' , θ_1' , \cdots , θ_{N-3}' - виртуальные представления группы SU(N), обращающиеся в нуль при ограничении на SU(2) (см. [1]):

$$\theta_i = \theta_i(\psi_1, \psi_{2^{r+i}}) = \text{Re } s_t(P_1(t) - \psi_1, P_{2^{r+i}}(t) - \psi_{2^{r+i}}), \quad i = 0, 1, 2, \dots, N-3,$$

r — достаточно велико, $t=\varphi_1$ — 2-мерное простейшее неприводимое представление группы SU(2), рассматриваемое как образующий элемент в кольце RSU(2) представлений группы SU(2).

Если $k_0 = p + l$ четное, то соответственно

$$\theta'_i = \theta'_i(\psi_1, \psi_{\gamma^{r+i}}) = \text{Re } s_u(P_1(u) - \psi_1, P_{\gamma^{r+i}}(u) - \psi_{\gamma^{r+i}}), \quad i = 0, 1, 2, \dots, N-3,$$

r – достаточно велико, $u = t \otimes t - t^2$.

И при k_0 нечетном:

$$ch\gamma(\theta_i) = \frac{c_3(f(\theta_i))x_5}{2!} - \frac{c_4(f(\theta_i))x_7}{3!} + \dots + \frac{(-1)^{N-1}c_N(f(\theta_i))x_{2N-1}}{(N-1)!},\tag{1}$$

где

$$c_{s}(f(\theta_{i})) = \left(2^{2(r+i)} - 2^{s(r+i)}\right)(-1)^{k_{0}-1} \frac{1}{6} \sum_{j=0}^{l} (k_{j} + 1)(k_{j} + 2k_{j}) \cdot \operatorname{Re} s_{t}\left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{2^{r+i}}(\widetilde{t})}{\widetilde{t}}\right); \quad (2)$$

при k_0 четном:

$$ch\gamma(\theta_i') = \frac{c_3(f(\theta_i'))x_5}{2!} - \frac{c_4(f(\theta_i'))x_7}{3!} + \dots + \frac{(-1)^{N-1}c_N(f(\theta_i'))x_{2N-1}}{(N-1)!},$$
(3)

где

$$c_{s}(f(\theta_{i}')) = \left(2^{2(r+i)} - 2^{s(r+i)}\right)(-1)^{k_{0}-1} \frac{1}{24} \sum_{j=0}^{l} (k_{j} + 1)(k_{j}^{2} + 2k_{j}) \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}'(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{2^{r+i}}'(\widetilde{u})}{\widetilde{u}}\right), \quad (4)$$

i=0,1,2,...,N-3; x_5,x_7,\cdots,x_{2N-1} — примит ивные образующие кольца когомологий $H^*\big(SU\big(N\big)/SU\big(2\big)\big)\otimes Q$. Здесь $P_i(t)=\psi_i(\varphi(t))$ — полином от переменной t в кольце представлений RSU(2), соответственно $P_i(u)=\psi_i(\varphi(u))$; $\widetilde{P}(\widetilde{t})$ — получен из $P_i(t)$ — N подстановкой $t=\widetilde{t}+2$, $\widetilde{t}=t-2$, N — N -мерное, 2 — 2-мерное тривиальные представления группы SU(2): $\widetilde{P}(\widetilde{t})=P_i(\widetilde{t})-N$. Соответственно $\widetilde{P}(\widetilde{u})=P_i(\widetilde{u})-N$.

2. Построение систем образующих и их характеров Черна

1°. Рассмотрим случай, когда группа SU(2) дана в представлении $\varphi = \varphi_1 \otimes \varphi_1$, $\dim \varphi_1 = 2$, φ — неприводимое представление SU(2), определяющее вложение: $SU(2) \subset SU(4)$. Группа SU(4) задана в простейшем представлении Λ_1 наименьшей размерности: $\dim \Lambda_1 = 4$ (Λ_1 — первая внешняя степень группы SU(4)).

Из формулы Клебша-Гордона:

$$\varphi = \varphi_1 \otimes \varphi_1 = \varphi_2 + \varphi_0$$
, $\dim \varphi_2 = 3$, $\dim \varphi_0 = 1$,

 $arphi_0$ — одномерное тривиальное, $arphi_2$ — неприводимое представление группы SU(2).

В терминах теоремы 1 N=4, $k_0=1+1=2$ — четное и требуется найти

$$\theta_i' = \theta_i'(\psi_1, \psi_2) = \text{Re } s_u (P_1(u) - \psi_1, P_2(u) - \psi_2), \tag{5}$$

$$\theta_i' = \theta_i'(\psi_1, \psi_4) = \text{Re } s_u (P_1(u) - \psi_1, P_4(u) - \psi_4), \tag{6}$$

и, соответственно,

$$ch\gamma(\theta_0') = \frac{c_3(f(\theta_0'))x_5}{2!} - \frac{c_4(f(\theta_0'))x_7}{3!},\tag{7}$$

$$ch\gamma(\theta_1') = \frac{c_3(f(\theta_1'))x_5}{2!} - \frac{c_4(f(\theta_1'))x_7}{3!},\tag{8}$$

 $u = t \otimes t = t^2$.

Заметим, что в нашем случае $\ r$ не требуется предполагать достаточно большим, возьмем $\ r=1$.

Вычислим полиномы $P_1(u), P_2(u), P_4(u)$ от переменной u в кольце представлений RSU(2). По определению $P_1(u)=\psi_1(\varphi(u))$, $P_2(u)=\psi_2(\varphi(u))$, $P_4(u)=\psi_4(\varphi(u))$. Очевидно, $\varphi(u)=u$. Выразить операции Адамса ψ_i через внешние степени можно с помощью формул Ньютона:

$$\psi_k - \Lambda_1 \psi_{k-1} + \Lambda_2 \psi_{k-2} - \ldots + (-1)^k \Lambda_k = 0,$$

$$\psi_{{\scriptscriptstyle k}} - \Lambda_{{\scriptscriptstyle 1}} \psi_{{\scriptscriptstyle k-1}} + \Lambda_{{\scriptscriptstyle 2}} \psi_{{\scriptscriptstyle k-2}} - \ldots + (-1)^{{\scriptscriptstyle n}} \Lambda_{{\scriptscriptstyle n}} \psi_{{\scriptscriptstyle k-n}} = 0 \quad \text{при} \quad k > n \, .$$

Следовательно, $\psi_1=\Lambda_1$, $\psi_2=\Lambda_1^2-2\Lambda_2$, $\psi_4=\Lambda_1^4-4\Lambda_1^2\Lambda_2+2\Lambda_2^2-4\Lambda_1\Lambda_3-4$, $\Lambda_4=1$, $\Lambda_1,\Lambda_2,\Lambda_3$ — внешние степени группы SU(4).

Ограничения $\Lambda_1(u), \Lambda_2(u), \Lambda_3(u)$ на подгруппу SU(2), данную в представлении $u=\varphi_1\otimes\varphi_1$, найдем, используя методы теории представлений:

$$\Lambda_1(u) = u$$
, $\Lambda_2(u) = 2u - 2$, $\Lambda_4(u) = u$.

Найдем теперь $\psi_1(\varphi(u))$, $\psi_2(\varphi(u))$, $\psi_4(\varphi(u))$:

$$\psi_1(\varphi(u)) = \Lambda_1(u) = u$$
,

$$\psi_{2}(\varphi(u)) = \Lambda_{1}^{2}(u) - 2\Lambda_{2}(u) = u^{2} - 4u + 4$$

 $\psi_4 = \Lambda_1^4(u) - 4\Lambda(u)\Lambda_2(u) + 2\Lambda_2^2(u) - 4\Lambda_1(u)\Lambda_3(u) - 4 == u^4 - 8u^3 + 20u^2 - 16u + 4. \tag{9}$ Итак,

$$P_1(u) = u$$
, $P_2(u) = u^2 - 4u + 4$, $P_4(u) = u^4 - 8u^3 + 20u^2 - 16u + 4$. (10)

Тогда

$$\theta'_{0} = \theta'_{0}(\psi_{1}, \psi_{2}) = \operatorname{Re} s_{u} (P_{1}(u) - \psi_{1}, P_{2}(u) - \psi_{2}) =$$

$$= \operatorname{Re} s_{u} (u - \psi_{1}, u^{2} - 4u + 4 - \psi_{2}) = \psi_{1}^{2} - 4\psi_{1} - \psi_{2} + 4;$$

$$\theta'_{0} = \psi_{1}^{2} - 4\psi_{1} - \psi_{2} + 4.$$

$$\theta'_{1} = \theta'_{1}(\psi_{1}, \psi_{4}) = \operatorname{Re} s_{u} (P_{1}(u) - \psi_{1}, P_{4}(u) - \psi_{4}) =$$
(11)

$$= \operatorname{Re} s_{u}(u - \psi_{1}, u^{4} - 8u^{3} + 20u^{2} - 16u + 4 - \psi_{4}) = \psi_{1}^{8} - 8\psi_{1}^{7} + 20\psi_{1}^{6} - 16\psi_{1}^{5} + 4\psi_{1}^{4} - \psi_{1}^{4}\psi_{2};$$

$$\theta_{0}' = \psi_{1}^{8} - 8\psi_{1}^{7} + 20\psi_{1}^{6} - 16\psi_{1}^{5} + 4\psi_{1}^{4} - \psi_{1}^{4}\psi_{2}.$$
(12)

Найдем характеры Черна $\gamma(\theta'_0)$ и $\gamma(\theta'_1)$. В соответствии с (7), (8) вычислим коэффициенты Дынкина отображений $f(\theta'_0)$ и $f(\theta'_1)$ (считаем r=1).

$$C_{3}(f(\theta_{0}')) = (2^{2} - 2^{3}) \cdot (-1)^{k_{0}-1} \frac{1}{24} \left[\sum_{j=0}^{1} ((k_{j} + 1)(k_{j}^{2} + 2k_{j})) \right] \cdot \operatorname{Re} s_{\widetilde{u}} \left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{2}(\widetilde{u})}{\widetilde{u}} \right),$$

здесь $k_0=p+l\;,\;k_1=p+l-2\;,\;k_2=p+l-4\;,\ldots,\;k_l=p+l-2l\;;$

$$C_3(f(\theta_0')) = \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right);$$

 $\widetilde{P}_1(u) = (\widetilde{u} + 4) - \widetilde{u}$, $P_2(u) = \widetilde{u}^2 + 4\widetilde{u}$, $P_4(u) = u^4 - 8u^3 + 20u^2 - 16u + 4$;

$$\operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{2}(\widetilde{u})}{\widetilde{u}}\right) = 1; \quad C_{3}(f(\theta'_{0})) = 1.$$

$$C_4(f(\theta_0')) = \left(2^{2(r-0)} - 2^{4(r+0)}\right) \cdot \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_4(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_j + 1\right)\left(k_j^2 + 2k_j\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_1(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_2(\widetilde{u})}{\widetilde{u}}\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left(\left(k_j + 1\right)\left(k_j + 2k_j\right)\right)\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left(\left(k_j + 1\right)\left(k_j + 2k_j\right)\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left(\left(k_j + 1\right)^{k_0-1} \frac{1}{24} \left(k_j + 2k_j\right)\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left(\left(k_j + 1\right)^{k_0-1} \frac{1}{24} \left(k_j + 2k_j\right)\right) = \left(-1\right)^{k_0-1} \frac{1}{24} \left(\left(k_j + 2k_j\right)^{k_0-1} \frac{1}{24} \left(k_j + 2k_$$

$$=12\operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}},\frac{\widetilde{P}_{2}(\widetilde{u})}{\widetilde{u}}\right)=1, \quad r=1; \qquad \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}},\frac{\widetilde{P}_{2}(\widetilde{u})}{\widetilde{u}}\right)=1; \qquad C_{4}\left(f(\theta_{0}')\right)=12.$$

$$ch\gamma(\theta_0') = \frac{x_5}{2} - 2x_7. \tag{13}$$

Для отображения $f(\theta_1')$ (r=1):

$$C_{3}(f(\theta'_{1})) = \left(2^{2(r+1)} - 2^{3(r+1)}\right) \cdot \left(-1\right)^{k_{0}-1} \frac{1}{24} \left[\sum_{j=0}^{1} \left(\left(k_{j} + 1\right)\left(k_{j}^{2} + 2k_{j}\right)\right)\right] \cdot \operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{4}(\widetilde{u})}{\widetilde{u}}\right);$$

$$C_{3}(f(\theta'_{1})) = 16\operatorname{Re} s_{\widetilde{u}}\left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{4}(\widetilde{u})}{\widetilde{u}}\right).$$

Находим $\widetilde{P}(\widetilde{u})$:

$$\widetilde{P}(\widetilde{u}) = \widetilde{u}^4 + 8\widetilde{u}^3 + 20\widetilde{u}^2 + 16\widetilde{u},$$

тогда

$$C_3(f(\theta_1')) = 16$$
.

$$C_{4}(f(\theta'_{1})) = (2^{2(r+1)} - 2^{4(r+1)}) \cdot (-1)^{k_{0}-1} \frac{1}{24} \left[\sum_{j=0}^{1} ((k_{j} + 1)(k_{j}^{2} + 2k_{j})) \right] \cdot \operatorname{Re} s_{\widetilde{u}} \left(\frac{\widetilde{P}_{1}(\widetilde{u})}{\widetilde{u}}, \frac{\widetilde{P}_{4}(\widetilde{u})}{\widetilde{u}} \right);$$

$$C_{4}(f(\theta'_{1})) = 240.$$

Таким образом,

$$ch\gamma(\theta_1') = 8x_5 - 40x_7. \tag{14}$$

Как следует из вычислений $ch\gamma(\theta_0')$ и $ch\gamma(\theta_1')$ невырождены и элементы $\gamma(\theta_0')$ и $\gamma(\theta_1')$ – система образующих.

2°. Пусть группа SU(2) дана в представлении $\varphi = \varphi_2 \otimes \varphi_1$ (в терминах диаграмм Дынкина $\stackrel{2}{\circ} \otimes \stackrel{1}{\circ}$), $\dim \varphi = 6$, N = 6, p = 2, l = 1, $k_0 = p + l = 3$. По формуле Клебша-Гордона получим разложение тензорного произведения $\varphi_2 \otimes \varphi_1$ в прямую сумму неприводимых компонент:

$$\varphi = \varphi_2 \otimes \varphi_1 = \varphi_3 + \varphi_1, \quad k_0 = 3, \quad k_1 = 1.$$
 (15)

При описанных условиях образующими элементами в кольце $K^*(SU(N)/SU(2))\otimes Q$ будут (см. т. 1 при k_0 – нечетном):

$$\gamma(\theta_0), \ \gamma(\theta_1), \ \gamma(\theta_2), \ \gamma(\theta_3).$$
 (16)

При этом

$$\theta_i = \theta_i(\psi_1, \psi_{2^{r+i}}) = \text{Re } s_t(P_1(t) - \psi_1, P_{2^{r+i}}(t) - \psi_{2^{r+i}}), \tag{17}$$

i = 0,1,2,3 . Как и в 1^0 будем проводить вычисления при r = 1 .

Прежде всего, требуется представить φ в виде полинома от переменной $t=\varphi_1$ в кольце представлений RSU(2): из (15) получаем

$$\varphi(t) = t^3 - t. \tag{18}$$

В кольце представлений RSU(2) группы Ли SU(6) образующими элементами служат ее внешние степени $-\Lambda_0,\Lambda_1,\Lambda_2,\Lambda_3,\Lambda_4,\Lambda_5$.

Построим теперь полиномы $P_1(t), P_2(t), P_4(t), P_8(t), P_{16}(t)$. Напомним, что операции Адамса ψ_i обладают свойствами:

$$\psi_s(u_1 + u_2) = \psi_s(u_1) + \psi_s(u_2), \quad \psi_s(u_1 \otimes u_2) = \psi_s(u_1)\psi_s(u_2), \quad \psi_{st}(u) = \psi_s(\psi_t(u)).$$

По определению $P_i(t)$:

$$P_1(t) = \psi_1(\varphi(t)) = \Lambda_1(\varphi) = \varphi(t) = t^3 - t$$
, $P_2(t) = \psi_2(\varphi(t)) = \psi_1(\psi_2(t))$.

В кольце RSU(2) элемент t — первая внешняя степень λ_1 группы SU(2): $\psi_1(t)=\lambda_1,\ \psi_2(t)=t^2-2,\ \lambda_2=1.$ Таким образом, $\psi_1(t)=t$, $\psi_2(t)=\lambda_1^2-2\lambda_1$, тогда

$$P_2(t) = \psi_1(\psi_2(t)) = \psi_1(t^2 - 2) = P_1(t^2 - 2) = (t^2 - 2)^3 - (t^2 - 2).$$

Аналогично,

$$\begin{split} P_4(t) &= \psi_4(\varphi(t)) = \psi_2(\psi_2(t)) = ((t^2 - 2)^2 - 2)^3 - ((t^2 - 2) - 2); \\ P_8(t) &= \psi_8(\varphi(t)) = \psi_2(\psi_4(t)) = (((t^2 - 2)^2 - 2)^2 - 2)^3 - (((t^2 - 2) - 2)^2 - 2); \\ P_{16}(t) &= \psi_{16}(\varphi(t)) = \psi_2(\psi_8(t)) = ((((t^2 - 2)^2 - 2)^2 - 2)^2 - 2)^3 - ((((t^2 - 2) - 2)^2 - 2)^2 - 2). \end{split}$$

Характеры Черна элементов $\gamma(\theta_0)$, $\gamma(\theta_1)$, $\gamma(\theta_2)$, $\gamma(\theta_3)$ найдем по формулам (1), (2):

$$ch\gamma(\theta_i) = \frac{c_3(f(\theta_i))x_5}{2!} - \frac{c_4(f(\theta_i))x_7}{3!} + \frac{c_5(f(\theta_i))x_9}{5!} - \frac{c_6(f(\theta_i))x_{11}}{6!}, \quad i = 0,1,2,3. \quad (18)$$

При вычислении коэффициентов Дынкина положим r = 1:

$$\begin{split} c_{s}(f(\theta_{i})) &= \left(2^{2(r+i)} - 2^{s(r+i)}\right) \left(-1\right)^{k_{0}-1} \frac{1}{6} \sum_{j=0}^{l} (k_{j}+1)(k_{j}+2k_{j}) \cdot \operatorname{Re} s_{t} \left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{2^{r+i}}(\widetilde{t})}{\widetilde{t}}\right), \\ s &= 3,4,5,6; \quad i = 0,1,2,3 \, . \\ ch\gamma(\theta_{0}) &= \left(-22x_{5} + 22x_{7} - \frac{77}{6}x_{9} + \frac{11}{12}x_{11}\right) \cdot \operatorname{Re} s_{\widetilde{t}} \left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{2}(\widetilde{t})}{\widetilde{t}}\right); \\ ch\gamma(\theta_{1}) &= \left(-586x_{5} + 440x_{7} - \frac{682}{3}x_{9} + \frac{1397}{15}x_{11}\right) \cdot \operatorname{Re} s_{\widetilde{t}} \left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{4}(\widetilde{t})}{\widetilde{t}}\right); \\ ch\gamma(\theta_{2}) &= \left(-2464x_{5} + 7392x_{7} - \frac{44968}{3}x_{9} + 9009x_{11}\right) \cdot \operatorname{Re} s_{\widetilde{t}} \left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{8}(\widetilde{t})}{\widetilde{t}}\right); \\ ch\gamma(\theta_{3}) &= \left(-21120x_{5} + 11 \cdot 128 \cdot 85x_{7} + 11 \cdot (2^{8} - 2^{20})x_{9} - 11 \cdot (2^{8} - 2^{24})x_{11}\right) \times \\ &\times \operatorname{Re} s_{\widetilde{t}} \left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{16}(\widetilde{t})}{\widetilde{t}}\right), \end{split}$$

 x_5, x_7, x_9, x_{11} — примитивные образующие кольца когомологий $K^*(SU(N)/SU(2))\otimes Q$. Осталось проверить нетривиальность результантов.

Вычислим значения
$$\operatorname{Re} s_{\widetilde{t}}\left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}},\frac{\widetilde{P}_{2}(\widetilde{t})}{\widetilde{t}}\right)$$
:
$$\widetilde{P}_{1}(t) = P_{1}(\widetilde{t}+2) - 6 = (\widetilde{t}+2)^{3} - (\widetilde{t}+2) = \widetilde{t}^{2} + 6\widetilde{t} + 11\widetilde{t} \ .$$

$$\widetilde{P}_{2}(t) = P_{2}(\widetilde{t}+2) - 6 = ((\widetilde{t}+2)^{3} - 2)^{3} - ((\widetilde{t}+2)^{2} - 2) =$$

$$\widetilde{t}^{6} + 2\widetilde{t}^{5} + 54\widetilde{t}^{4} + 112\widetilde{t}^{3} + 10\widetilde{t}^{2} + 44\widetilde{t} \ .$$

$$\operatorname{Re} s_{\widetilde{t}}\left(\frac{\widetilde{P}_{1}(\widetilde{t})}{\widetilde{t}},\frac{\widetilde{P}_{2}(\widetilde{t})}{\widetilde{t}}\right) = \operatorname{Re} s_{\widetilde{t}}\left(\frac{\widetilde{t}^{2} + 6\widetilde{t} + 11\widetilde{t}}{\widetilde{t}},\frac{\widetilde{t}^{6} + 2\widetilde{t}^{5} + 54\widetilde{t}^{4} + 112\widetilde{t}^{3} + 10\widetilde{t}^{2} + 44\widetilde{t}}{\widetilde{t}}\right) =$$

$$\begin{vmatrix} 1 & 6 & 11 & 0 & 0 & 0 & 0 \\ 0 & 1 & 6 & 11 & 0 & 0 & 0 \\ 0 & 0 & 1 & 6 & 11 & 0 & 0 \\ 0 & 0 & 1 & 6 & 11 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 & 11 & 0 \\ 0 & 0 & 0 & 1 & 6 & 11 \\ 1 & 12 & 54 & 112 & 10 & 44 \\ 0 & 0 & 1 & 12 & 54 & 112 & 10 & 44 \\ \end{vmatrix} = 11 \cdot \begin{vmatrix} 1 & 6 & 1 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{vmatrix} = 396 \neq 0 \ .$$

Аналогично, прямым подсчетом, проверяется нетривиальность результантов

$$\operatorname{Re} s_{\tilde{t}}\left(\frac{\widetilde{P}_{1}(\tilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{4}(\tilde{t})}{\widetilde{t}}\right), \operatorname{Re} s_{\tilde{t}}\left(\frac{\widetilde{P}_{1}(\tilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{8}(\tilde{t})}{\widetilde{t}}\right), \operatorname{Re} s_{\tilde{t}}\left(\frac{\widetilde{P}_{1}(\tilde{t})}{\widetilde{t}}, \frac{\widetilde{P}_{16}(\tilde{t})}{\widetilde{t}}\right).$$

Следовательно, при r=1 характеры Черна $ch\gamma(\theta_0)$, $ch\gamma(\theta_1)$, $ch\gamma(\theta_2)$, $ch\gamma(\theta_3)$ невырождены, и в условиях теоремы 1 элементы $\gamma(\theta_0)$, $\gamma(\theta_1)$, $\gamma(\theta_2)$, $\gamma(\theta_3)$ являются системой образующих в кольце $K^*\big(SU\big(6\big)/SU\big(2\big)\big)$, где группа SU(2) дана в представлении $\varphi=\varphi_2\otimes\varphi_1$, а SU(6) – своим простейшим нетривиальным представлением.

Приводимые здесь примеры, а также другие вычисления с высокой степенью вероятности позволяют предполагать, что предъявленное к r требование быть достаточно большим (оно возникло в процессе доказательства (см. [1]) избыточно.

Примечания:

- 1. Козлов В.А. Об элементах кольца $K^*(G/H)$ и их характерах Черна для одной серии однородных пространств G/H // Труды ФОРА. 2009. № 14. С. 5-12. URL: http://fora.adygnet.ru
- 2. Козлов В.А. Образующие кольца $K^*(G/H)$ и их характеры Черна одной серии однородных пространств G/H // Вестник Адыгейского государственного университета. Сер. «Естественно-математические и технические науки». 2010. Вып. 2. С. 29-33. URL: http://vestnik.adygnet.ru