УДК 539.2 ББК 22.37 Г 61

Головнев Ю.Ф.

Доктор физико-математических наук, профессор, зав. кафедрой общей и теоретической физики Тульского государственного педагогического университета им. Л.Н. Толстого, тел. (4872) 35-78-29, e-mail: physics@tspu.tula.ru

Сидорова И.Г.

Аспирант кафедры общей и теоретической физики Тульского государственного педагогического университета им. Л.Н. Толстого, тел. (4872) 35-78-29, e-mail: physics@tspu.tula.ru

Лаковцев А.Б.

Кандидат физико-математических наук, ассистент кафедры общей и теоретической физики Тульского государственного педагогического университета им. Л.Н. Толстого, тел. (4872) 35-78-29, e-mail: alex_lak@rambler.ru

Триплетные экситоны в наноразмерных сверхрешетках EuO – SrO^{*}

(Рецензирована)

Аннотация

В работе исследуется гетеросистема на основе ферромагнитного полупроводника EuO. Используя метод спин-гамильтониана, построена схема энергетических уровней экситонных состояний. Установлено, что энергия связи электрона и дырки в покоящемся экситоне возрастает на величину энергии обмена.

Ключевые слова: экситон, ферромагнитный полупроводник, энергия связи, энергия обмена.

Golovnev Yu.F.

Doctor of Physics and Mathematics, Professor, Head of Department of General and Theoretical Physics of Tula State Pedagogical University named after L.N. Tolstoy, ph. (4872) 35-78-29, e-mail: physics@tspu.tula.ru

Sidorova I.G.

Post-graduate student of Department of General and Theoretical Physics of Tula State Pedagogical University named after L.N. Tolstoy, ph. (4872) 35-78-29, e-mail: physics@tspu.tula.ru

Lakovtsev A.B.

Candidate of Physics and Mathematics, Assistant of Department of General and Theoretical Physics of Tula State Pedagogical University named after L.N. Tolstoy, ph. (4872) 35-78-29, e-mail: alex_lak@rambler.ru

Triplet excitons in nanodimensional superlattices EuO – SrO

Abstrac

The work examines a heterosystem on the basis of ferromagnetic semiconductor EuO. Using a spin-Hamiltonian method the scheme of power levels of exciton conditions is constructed. It is established that energy of communication of electron and hole in based exciton increases by a size of energy of an exchange.

Key words: exciton, the ferromagnetic semiconductor, energy of communication, energy of an exchange.

Изучение свойств экситонов в квазидвумерных полупроводниковых системах привлекает большое внимание, прежде всего потому, что они являются наиболее эффективными средами для получения бозе-конденсата (БК) из этих коллективных воз-

^{*} Работа выполнена при финансовой поддержке РФФИ, грант 11-02-97500-р_центр_а.

буждений в кристаллах. Экситоны могут возникать и в туннельносвязанных квантовых ямах (КЯ) наноразмерных сверхрешеток, где возбужденные электроны и дырки разделены и в тоже время связаны кулоновским притяжением. Из-за дипольного отталкивания они не образуют экситонных молекул, а время жизни их превосходит характерные времена термализации. БК из межъямных экситонов (МЭ) прежде всего создается в условиях пространственного ограничения их свободного движения [1, 2].

Для увеличения накопления плотности экситонов необходимо еще, чтобы они являлись самыми нижними возбуждениями в соответствующей гетеросистеме. Относительная интенсивность этих возбуждений в КЯ значительно больше, чем в объемных кристаллах, что обусловлено как увеличением силы осциллятора экситона, так и особенностями переноса экситонного возбуждения в квазидвумерной системе. Поиск материалов для наноразмерных систем с такими параметрами приводит к ферромагнитным полупроводникам типа EuO, EuS и т.п. При получении бездефектных гетеропереходов в соответствующих сверхрешетках моноокислам европия подходят нанослои из окисла стронция, а халькогенидам европия слои из PbS или SmS [3]. В таких наноструктурах влияние квантоворазмерного эффекта на переходы в недостроенных 4f- оболочках обусловлено сжатием волновых функций электронов, понижением миграции возбуждения, а также изменением взаимодействия экситонных 5dэлектронов с фононами [4].

Проведем анализ энергетического спектра экситонов 5*d*-5*d*- типа (рис. 1) в наноразмерных гетеросистемах EuO–SrO, где ширина запрещенной зоны SrO составляет 5,8 эВ, а в нанослое EuO равна 3,6 эВ. Барьерной прослойкой является окись стронция, а квантовые ямы образованы моноокисью европия, которая является ферромагнитной при температурах ниже точки Кюри ($T_c=70K$). В кристаллическом поле 5*d*-состояния расщепляются на e_g и t_{2g} - уровни и разделены энергетической щелью порядка 1,23 эВ. Ферромагнитный катион-катионный обмен понижает энергию 5*d*- состояния на 0,5 эВ и краю поглощения при возбуждении триплетных (магнитных) экситонов, который соответствует переходу $4^7 f ({}^8S_{7/2}) \rightarrow 4^6 f (F_0) 5d_{t_{2g}}$, отвечает энергия ~ 1,1 эВ. Сдвиг t_{2g} - полосы в сторону низких энергий отражает кинетическое уширение за счет перекрытия с соседними ионами европия и поэтому оптические экситонные состояния лежат ниже пустых состояний 5*d*- зоны.

Рис. 1. Образование экситона типа 5d-5d

Проанализируем спектр прямых и МЭ, образующихся при переходе электронов с $4^7 f$ - уровней в $5d_{t_{2g}}$ - состояния слоев EuO, разделенных SrO (рис. 2).

Рис. 2. Схема образования прямых a) и межъямных δ) э кситонов в слоях EuO. E_{c1} и E_{c2} – дно зоны проводимости, E_{v} – потолок валентных зон, d и p – ширина слоев

Гамильтониан для прямых экситонов имеет следующий вид:

$$H_{1}^{e} = \frac{1}{2m_{e}^{*}} (-i\hbar\nabla_{e})^{2} + \frac{1}{2m_{h}^{*}} (-i\hbar\nabla_{h})^{2} - \frac{e^{2}}{\varepsilon_{1} |\mathbf{r}_{e} - \mathbf{r}_{h}|} - \frac{A}{2} (S_{e} + S_{h}) \theta(r \in p),$$
(1)

где $m_{e,h}^*$, $\mathbf{r}_{e,h}$, $S_{e,h}$ – эффективные массы, координаты, спин электрона (дырки), ε_1 – диэлектрическая проницаемость слоя EuO, A – интеграл косвенного обмена; $\theta(r \in p) = 1$ при $\mathbf{r} \le \mathbf{p}$ и $\theta(r \in p) = 0$ при $\mathbf{r} > \mathbf{p}$ [5].

В случае МЭ гамильтониан запишется в следующей форме:

$$H_{2}^{e} = \frac{1}{2m_{e}^{*}} (-i\hbar\nabla_{e})^{2} + \frac{1}{2m_{h}^{*}} (-i\hbar\nabla_{h})^{2} - \frac{e^{2}}{\varepsilon_{2} \left(d^{2} + \left|\mathbf{r}_{e} - \mathbf{r}_{h}\right|^{2}\right)^{1/2}} - \frac{A}{2} (S_{e} + S_{h}) \theta(r \in p) .$$
(2)

Здесь ε_2 – диэлектрическая проницаемость SrO, d – ширина данного слоя.

При определении энергии экситонов (рис. 2) волновые функции подбирались в виде линейной комбинации одночастичных состояний с определенной локализацией дырки и электрона [6, 7]:

$$\Psi = \sum_{i,j} a_{ij} \Psi_{ji} \left(\mathbf{r}_{e}, \mathbf{r}_{h} \right), \qquad (3)$$

где a_{ij} – амплитуда вероятности их обнаружения. Энергии экситонов определялись из уравнений:

$$\langle ij | H_1^{\bullet} | nm \rangle - E_1 \langle ij | nm \rangle = 0,$$

$$\langle ij | H_2^{\bullet} | nm \rangle - E_2 \langle ij | nm \rangle = 0.$$

$$(4)$$

Исходя из условия минимума полной энергии электронной системы, находим

$$E = -\frac{1}{2} \left[A(S_e + S_h) + \frac{\mu e^2}{\hbar^2 \varepsilon_1^2 n^2} \right] + \frac{\hbar^2 \mathbf{k}^2}{2(m_e^* + m_h^*)},$$
(5)

где $\mu = \frac{m_e^* m_h^*}{m_e^* + m_h^*}$ – приведенная масса. Величина энергии отсчитывалась от дна зоны проводимости E_{c2} . Как видно из формулы (5), она возросла на величину энергии обмена.

Перейдем к анализу энергетического спектра экситона 5d-5d- типа, с учетом мультиплетности $5d_{t_{2g}}$ - состояния, т.е. возможности перехода спин-поляризованного электрона в сильном обменном поле $B_E=0$ в состояния $5d_{xy}$, $5d_{yz}$ и $5d_{xz}$ из одного из семи уровней 4f- полосы. В этом случае получаем 21 переход, связанный с поглощением или излучением энергии (рис. 3).

Рис. 3. Переход электрона с $4f^7$ - уровней на 5*d*- уровни с сохранением параллельной ориентации спинов $\uparrow S_e$ и $\uparrow S_h$. Всего таких переходов 21. Случай 1 соответствует минимальному значению энергии поглощения E_{\min} , случай 2 – E_{\max}

Задачу с центральным ионом Eu^{3+} , двенадцатью ближайшими соседями Eu^{2+} и $5d_{t_{2g}}$ - состояниями экситонного электрона можно решить точно. В этом случае и магнитные, и аномальные свойства такой системы рассматриваются с помощью модели обменного (молекулярного) поля. Спиновый гамильтониан такой системы имеет вид:

$$H_{o\delta M} = -\sum_{n>m} J_{mn} S_n S_m - 2\sum_{d,n} J_{d,n} \sigma_d S_n - 4\sum_{d,l} J_{d,d'} \sigma_d \sigma_{d'},$$
(6)

где первый член описывает прямой обмен между $4f^7$ - электронами *n* и *m* узлов, второй – *d*–*f*- обменную связь между $5d_{t_{2g}}$ - электроном и $4f^7$ - электронами и третий – обменную связь между $5d_{t_{2g}}$ и $5d'_{t_{2g}}$ - электронами. В нашей задаче достаточно рассмотреть модель с центральным ионом Eu³⁺, ближайшими соседями Eu²⁺ и 5*d*_{*t*_{2g}} электроном. Тогда эффективный спиновый гамильтониан (6) примет вид [8]:

$$H_{abb} = -2\sigma_d (J_0 S_c + J_1 S_u), \tag{7}$$

где $S_u = \sum_n S_n$ – сумма спинов ближайших соседей, S_c – спин центрального иона Eu^{3+} , σ_d – спин экситонного электрона, J_0 – константа *s*–*f* обменного взаимодействия, J_1 - константа *d*–*f* обменного взаимодействия. В (7) член, описывающий прямой обмен между $4f^7$ - электронами, отсутствует, так как он много меньше *d*–*f*- обменного взаимодействия.

Найдем возможные энергетические уровни, на которые может переходить электрон магнитного экситона, находясь в обменном поле, в соответствие с мультиплетностью состояний S_u . До возбуждения состояние этого электрона будет описываться спиновой функцией $|S_m, S_m^7, S_u, \xi, \pm\rangle$, где через (±) обозначено параллельное или антипараллельное расположение спинов σ_d , а ξ определяет мультиплетность состояний для ближайших соседей S_u .

Группа симметрии EuO есть O_h^5 и состояния классифицируются по неприводимым представлениям этой группы. Эти состояния составлены из $5d_{t_{2g}}$ - состояний центрального и двенадцати ближайших ионов европия. В частности, оптически активные триплетные экситонные состояния можно составить из состояний Γ_{12}^+ или Γ_{25}^+ - типа.

В гамильтониане (7) оператор полного спина равен $S_m = \sigma_d + S_c + S_u$, а оператор полного $4f^7$ - спина ионов европия определяется соотношением $S_f = S_c + S_u$. Далее, квантовые числа для операторов S_u^2 и S_m^2 равны соответственно $S_u(S_u+1)$ и $S_m(S_m+1)$. В этом случае $S_u=42,41,...,1,0$, а $S_m = S_u + 4,...,S_u + 3,...,S_u - 4$ или $S_m = 4 + S_u,...,3 - S_u$. Для обозначения собственных значений гамильтониана (7) будем использовать суммарный спин соседей S_u и полный спин нашей системы S_m . Из рекуррентного соотношения [9] можно получить мультиплетности для двенадцати спинов Eu²⁺ ближайших соседей. Как и следует ожидать, если суммарный спин этих соседей будет равен нулю ($S_u = 0$), то число мультиплетности окажется равным 2,5·10⁷, то есть экситонная зона будет состоять из большого числа плотно расположенных энергетических уровней. В большом обменном поле все спины этих соседей будут параллельны и $S_u = \sum_{n=1}^{12} S_n = 42$, а число мультиплетности станет минимальным – равным единице. Для этого случая, волновая функция, когда экситонный электрон перейдет с $4f^7$ -уровня на $5d_{i_{2g}}$ - уровень, запишется в виде $|S_u \cdot 1, (S_u + 4), +\rangle_{fd}$, а собственное значение получается из выражения:

$$\left\langle S_{u} \cdot \mathbf{1}, (S_{u} + 4), + \left| -2J_{0}\sigma S_{e} - 2J_{1}\sigma S_{u} \right| S_{u} \cdot \mathbf{1}, (S_{u} + 4), + \right\rangle_{fd} = -\frac{5}{2}J_{0} - S_{u}J_{1}.$$
 (8)

Если бы направление спинов экситонного электрона и на центральном ионе Eu³⁺ было противоположно спинам ближайших соседей, то состояние следовало бы записать в таком виде $|S_u \cdot 1, (S_u - 4), -\rangle_{fd}$ и собственное значение гамильтониана (8) изменилось бы и стало равным:

$$\left\langle S_{u} \cdot 1, (S_{u} - 4), - \left| -2J_{0}\sigma S_{c} - 2J_{1}\sigma S_{u} \right| S_{u} \cdot 1, (S_{u} - 4), + - \right\rangle_{fd} = -\frac{5}{2}J_{0} - (S_{u} + 1)J_{1}.$$
 (9)

В конкретных расчетах учтем, что обменное взаимодействие между экситонным электроном $5d_{t_{2g}}$ и $4f^7$ - электронами ближайших соседей заметно меньше, чем взаимодействие d-f- типа в триплетном экситоне и согласуется с величиной $J_{sf} = J_1 = 209 \text{ cm}^{-1}$, а $J_{df} = J_0 = 787 \text{ cm}^{-1}$. Исходя из этих данных и выражения для собственного значения гамильтониана (9) получим величину энергии связи для оптически активного триплетного экситона, принадлежащего к 5d-5d- типу. Она оказалась равной 0,8 эВ, что существенно превышает энергию связи в известных полупроводниковых материалах, широко используемых сегодня в экситонике. Окись европия является по этому параметру перспективным материалом для получения БК из экситонов.

Для расчета энергии экситонов методом спин – гамильтониана необходимо построить базис волновых функций, включающий в себя спины электрона и дырки [10]. При этом главным образом, необходимо учесть четыре варианта взаимной ориентации спинов электрона и дырки:

$$\psi_{1}^{\downarrow\downarrow\downarrow} = |k;\downarrow,-\frac{3}{2}\rangle, \psi_{4}^{\uparrow\uparrow} = |k;\uparrow,\frac{3}{2}\rangle,$$

$$\psi_{2,3}^{\downarrow\uparrow\uparrow+\uparrow\downarrow} = (-a_{2},a_{3})|k;\downarrow,\frac{1}{2}\rangle + (a_{2},a_{3})|k;\uparrow,-\frac{1}{2}\rangle,$$
(10)

где k – волновой вектор экситона, a_2 , a_3 – константы, определяемые из решения уравнения Шредингера.

Наконец, для анализа спектра прямых и МЭ целесообразно подбирать волновые функции в виде линейной комбинации одночастичных состояний с определенной локализацией электрона и дырки (3).

Для определения энергетического спектра экситонов в сверхрешетке необходимо решить уравнение НΨ = ЕΨ, причем, вид гамильтониана системы зависит от выбора пробных волновых функций.

$$\Psi_e(Z_e,\rho) = F_{3D}(Z_e,\rho)\varphi_{eX3}(Z_e) | X_{3,s} \rangle, \qquad (11)$$

При выборе (11) в качестве волновой функции, оператор гамильтона имеет вид:

$$H(k) = H'(k) + U(r).$$
 (12)

Здесь H'(k) – гамильтониан, определяющий спектр вблизи точки X_3 , $U(r) = -\frac{Ze^2}{\varepsilon r}$ – кулоновский потенциал, ε – диэлектрическая проницаемость, Z – суммарный заряд на 4f- уровне. Для гетеросистемы EuO–SrO гамильтониан H'(k) можно представить в виде:

$$H'(k) = E_0(z) + \frac{\hbar^2 k_{II}^2}{2m_{IIx}} + \frac{\hbar^2 k_{\perp}^2}{2m_{\perp x}} + \begin{bmatrix} 0 & -iDk_z \\ iDk_z & 0 \end{bmatrix},$$
(13)

где $k_z = -i\frac{\partial}{\partial z}$, $E_0(z)$ – энергетическое положение точки X₃, D – константа, описы-

вающая **kp**-взаимодействие.

Следует заметить, что использовать (12) для расчета энергетического спектра экситонов в сверхрешетке EuO–SrO неудобно, ввиду того, что гамильтониан не учитывает напрямую обменное 4f–5d- взаимодействие, главным образом определяющее экситонный спектр в заданной гетеросистеме. Для его учета в (13) необходимо раскрывать константу **kp**- взаимодействия, имеющую вид матрицы 8×8, что осложнит математические вычисления.

Использование базиса (10) в качестве волновых функций позволяет учесть спиновые ориентации электрона и дырки. При наличии внешнего магнитного поля на спин электрона и дырки будет действовать эффективное магнитное поле

$$H = \frac{7}{2g_{e,h}^{-1}\beta^{-1}} \sum_{i} J_{Eui} B_{7/2} g \beta H_0 (kT)^{-1}, \qquad (14)$$

где H_0 – внешнее поле. Причем, прямое действие H_0 на электрон и дырку оказывается гораздо меньше (только в том случае, если внешнее магнитное поле H_0 меньше некоторого критического значения $H_{\kappa p}$), чем (14). В этом случае гамильтониан можно представить в виде:

$$H = A_{e}s_{e} + A_{h}s_{h}^{\circ\phi\phi} + g_{e}\beta H_{0}s_{e} + g_{h}\beta H_{0}s_{h}^{\circ\phi\phi} + J_{e,h}s_{h}^{\circ\phi\phi}s_{e}, \qquad (15)$$

$$A_{e,h} = n_{e,h} J_{e,h} s_{Eu}, (16)$$

где s_e – спин электрона, $s_h^{\circ\phi\phi}$ – эффективный спин дырки, $J \equiv J_{e,h}$ – константа обменного взаимодействия, $n_{e,h}$ – концентрации электронов и дырок соответственно.

Использование волновых функций в виде (10) и гамильтониана в виде (15) позволяет построить схему энергетических уровней экситона, расщепленных обменным взаимодействием:

$$E_{1} = \frac{1}{2} [3/2 J - (3A_{h} + A_{e})],$$

$$E_{2,3} = \frac{1}{2} \left\{ -\frac{1}{2} J \mp \left[(A_{e} - A_{h})^{2} + 4J^{2} \right]^{1/2} \right\},$$

$$E_{4} = \frac{1}{2} [3/2 J - (3A_{h} + A_{e})].$$
(17)

Выражения (17) имеют такой вид, если в (15) не учитывать внешнее магнитное поле. Схема энергетических уровней экситона приведена на рис. 4.

Рис. 4. Схема энергетических уровней экситона в структуре EuO-SrO

При условии, что число ионов европия, с которыми эффективно обменное взаимодействие электронов, равно такому же числу ионов европия, с которыми эффективно обменное взаимодействие дырок, уширение экситонной полосы составляет 30 мэВ. При дальнейшем повышении концентрации ионов Eu²⁺ наблюдается сильное размытие экситонных полос.

Примечания:

- Зайцев С.В., Бричкин А.С., Дорожкин П.С., Bacher G. Релаксация экситонов в полумагнитных асимметричных двойных квантовых ямах // ФТП. 2008. Т. 42, вып. 7. С. 831-845.
- 2. Головнев Ю.Ф., Лаковцев А.Б. Конденсация магнитных экситонов в сверхрешетках типа ферромагнитный / парамагнитный полупроводник // Вестник Адыгейского государственного университета. Сер. «Естественно-математические и технические науки». 2009. Вып. 2. С. 74-80. URL: http://vestnik.adygnet.ru
- Головнев Ю.Ф., Панин В.А., Прохорова Т.А. Электронная структура границы раздела SrO EuO // Известия ТГУ. Сер. «Физика». 2001. Т. 7, вып. 2. С. 65-69.

References:

- 1. Zaytsev S.V., Brichkin A.S., Dorozhkin P.S, Bacher G. The relaxation of excitons in semimagnetic asymmetric double quantum wells // FTP. 2008. Vol. 42, Iss. 7. P. 831-845.
- Golovnev Yu.F., Lakovtsev A.B. Condensation of magnetic exitons in superlattices of ferromagnetic type / paramagnetic semiconductor // Bulletin of the Adyghe State university. Series «Natural-mathematical and technical sciences». 2009. Iss. 2. P. 74-80. URL: http://vestnik.adygnet.ru
- Golovnev Yu.F., Panin V.A., Prokhorova T.A. The electronic structure of the border of the section SrO – EuO // TGU News. Series «Physics». 2001. Vol. 7, Iss. 2. P. 65-69.

- Оптические свойства структур с квантовыми ямами Cd_{0.6}Mn_{0.4}Te / Cd_{0.5}Mg_{0.5}Te / В.Ф. Агекян, Н.Н. Васильев, А.Ю. Серов [и др.] // ФТТ. 2004. Т. 46, вып. 9. С. 1719-1722.
- 5. Головнев Ю.Ф., Лаковцев А.Б. Прямые и межъямные экситоны в гетероструктурах на основе редкоземельных полупроводников // Известия Тульского государственного университета. Сер. «Естественные науки». 2008. Вып. 1. С. 136-144.
- Верцимаха А.В., Лев С.Б., Сугаков В.И. Межъямные экситоны в полумагнитных полупроводниковых двойных квантовых ямах во внешнем магнитном поле // ФТТ. 2004. Т. 46, вып. 5. С. 919-923.
- 7. Головнев Ю.Ф. Наноразмерные ферромагнитные гетеросистемы. Тула: Изд-во ТГПУ, 2007. 262 с.
- 8. Головнев Ю.Ф., Лаковцев А.Б. Коллективные свойства триплетных экситонов в гетероструктурах на основе ферромагнитных полупроводников // Известия РАН. Сер. физическая. 2011. Т. 75, № 2. С. 194-196.
- 9. Метфессель З., Маттис Д. Магнитные полупроводники. М.: Мир, 1972. 405 с.
- Комаров А.В., Рябченко С.М., Витриховский Н.И. Магнитополевое расщепление n=2 экситонного состояния в ZnTe:Mn // Письма в ЖЭТФ. 1978. Т. 28, вып. 3. С. 119-123.

- 4. The optical properties of structures with quantum wells $Cd_{0.6}Mn_{0.4}Te$ / $Cd_{0.5}Mg_{0.5}Te$ / V.F. Agekyan, N.N. Vasiljev, A.Yu. Serov [etc.] // FTT. 2004. Vol. 46, Iss. 9. P. 1719-1722.
- 5. Golovnev Yu.F., Lakovtsev A.B. Straight and interwell exitons in heterostructures on the basis of rare-earth semiconductors // News of the Tula State university. Series «Natural sciences». 2008. Iss. 1. P. 136-144.
- Vertsimakha A.V., Lev S.B., Sugakov V.I. Interwell exitons in semimagnetic semiconductor double quantum wells in the external magnetic field // FTT. 2004. Vol. 46, Iss. 5. P. 919-923.
- 7. Golovnev Yu.F. Nanodimensional ferromagnetic heterosystems. Tula: TGPU Publishing house, 2007. 262 p.
- Golovnev Yu.F., Lakovtsev A.B. The collective properties of triplet exitons in heterostructures on the basis of ferromagnetic semiconductors // News of the Russian Academy of Sciences. The physical series. 2011. Vol. 75, No. 2. P. 194-196.
- 9. Metfessel Z., Mattis D. Magnetic semiconductors. M.: Mir, 1972. 405 p.
- Komarov A.V., Ryabchenko S.M., Vitrikhovskiy N.I. Magnetic field splitting n=2 of exiton condition in ZnTe:Mn // Letters to ZHETF. 1978. Vol. 28, Iss. 3. P. 119-123.