УДК 612.66/.68 ББК 28.903,7 К 12

Кагазежева Н.Х.

Кандидат биологических наук, доцент кафедры биомеханики и медико-биологических дисциплин института физической культуры и дзюдо Адыгейского государственного университета, Майкоп, тел. (8772) 59-39-76, e-mail: k.nuriat@mail.ru

Коломийнева Н.С.

Кандидат педагогических наук, доцент кафедры биомеханики и медико-биологических дисциплин института физической культуры и дзюдо Адыгейского государственного университета, Майкоп, тел. (8772) 59-39-76, e-mail: kolombd@mail.ru

Влияние активного и пассивного табакокурения на показатели кардиореспираторной системы подростков в условиях горной местности

(Рецензирована)

Аннотация

В лонгитюдинальном исследовании на протяжении двух лет (2010-2011 гг.) у курящих и некурящих подростков, проживающих на территории Республики Адыгея в условиях горной местности, были выявлены достоверные различия по таким показателям функционирования кардиореспираторной системы (КРС), как частота дыхания (ЧД), глубина дыхания, частота сердечных сокращений (ЧСС). Восстановление показателей КРС после физических нагрузок у курящих подростков происходит существенно дольше, чем у некурящих.

Ключевые слова: показатели кардиореспираторной системы, частота и глубина дыхания, табакокурение, высокогорье, гипоксия, физическая нагрузка, процессы восстановления.

Kagazezheva N.Kh.

Candidate of Biology, Associate Professor of Biomechanics and Medicobiological Discipline Department of Institute of Physical Training and Judo, Adyghe State University, Maikop, ph. (8772) 59-39-76, e-mail: k.nuriat@mail.ru

Kolomiytseva N.S.

Candidate of Pedagogy, Associate Professor of Biomechanics and Medicobiological Discipline Department of Institute of Physical Training and Judo, Adyghe State University, Maikop, ph. (8772) 59-39-76, email: kolombd@mail.ru

Influence of active and passive tobacco smoking on indicators of teenager' cardiorespiratory system in the mountain districts

Abstract

The two-year longitudinal researches (2010-2011) on smokers and non-smoking teenagers living in the mountain district of the Republic of Adyghea show reliable distinctions in the following indicators of functioning of cardiorespiratory system: the breath frequency, the breath depth and the frequency of systoles. The cardiorespiratory system indicators are restored significantly longer at smoking teenagers after physical activities than at the non-smoking ones.

Keywords: indicators of cardiorespiratory system, frequency and breath depth, tobacco smoking, high-lands, hypoxia, physical activity, restoration processes.

Введение

Одним из негативных факторов, влияющих на здоровье человека, является табакокурение. В мире и в России сложилась катастрофическая ситуация, связанная с высоким уровнем употребления табака. Особое беспокойство вызывают угрожающие темпы роста распространенности табакокурения среди детей и подростков [1]. Курительный статус подростков в зависимости от региона проживания в России варьирует в широком диапазоне. Исследование курительного статуса детей и подростков Республики Адыгея проводилось и ранее, однако, учитывая быстрый рост употребления табака в России, требуется уточнение данного показателя среди детей и подростков на современном этапе. Общеизвестно отрицательное влияние курения табака на здоровье и физиологическое состояние человека. Тем не менее привычка употребления табака у юношей практически не снижается ни в количественном отношении к числу школьников старших классов, ни в объеме выкуриваемых сигарет.

Достаточно полную картину распространенности курения подростков дали результаты исследования, проведенного в 2010 году в России [2].

При проведении опроса было установлено, что 59% российских подростков хотя бы раз в жизни пробовали курить; 36% имели опыт курения за последние 30 дней до проведения опроса. Среди подростков 12-14 лет доля курящих составляет 22% [2].

Большинство подростков, имеющих опыт курения сигарет хотя бы раз в жизни, мотивировали свои поступки любопытством и желанием попробовать новое (43%). На прямое влияние других подростков (давление сверстников) как на причину курения указали 9% подростков, однако на косвенное влияние сослались 20%, сказав, что попробовать сигарету их побудило то обстоятельство, что их друзья курили и они закурили «за компанию».

В большинстве случаев (70%) подростки курят вне дома и школы – на улицах, в подъездах, дворах, парках и т.д. Тем не менее 17% утверждают, что обычно курят дома, 20% – в школе и 18% – в доме друзей. Чуть более половины подростков (53%) считают, что их родители знают о том, что они курят. Все перечисленные выше негативные тенденции имеют место как на федеральном, так и на региональном уровнях.

Табачный дым оказывает выраженное токсическое влияние на организм человека, а дети особенно чувствительны к токсическому и аллергизирующему воздействию компонентов табачного дыма [3]. Воздействие табачного дыма на различные системы организма изучено в основном у взрослых курильщиков. При активном и пассивном курении может наблюдаться снижение функции легких и увеличение патологических респираторных симптомов у взрослых [3]. Изменения со стороны дыхательной системы у подростков и детей при табакокурении изучены недостаточно, исследований о взаимосвязи табакокурения и патологии органов дыхания, сердечнососудистой системы у детей и подростков в России практически не проводилось.

При сгорании табака образуется основой и дополнительный потоки дыма. Основной поток формируется во время затяжки дыма, проходит через все табачное изделие, вдыхается и выдыхается курильщиком. Дополнительный поток образуется выдыхаемым дымом, а также выделяется между затяжками в окружающую среду из обугливающейся части сигареты (папиросы, трубки и т.п.). Более 90% основного потока состоит из 350-500 газообразных компонентов, особо вредоносными из которых являются окись и двуокись углерода. Остальную часть основного потока представляют твердые микрочастицы, включающие различные токсические соединения. Основной поток табачного дыма образует 35% сгорающей сигареты, 50% уходят в окружающий воздух, составляя дополнительный поток, от 5 до 15% компонентов сгоревшей сигареты остается в фильтре. В дополнительном потоке окиси углерода содержится в 4-5 раз, никотина и смол – в 50 раз, а аммиака – в 45 раз больше, чем в основном! Таким образом, как это ни парадоксально, в окружающую курильщика атмосферу попадает токсических компонентов во много раз больше, чем в организм самого курильщика. Именно это обстоятельство обуславливает особую опасность пассивного или «принудительного» курения для окружающих. При вдыхании табачного дыма радиоактивные частицы оседают глубоко в легких, разносятся током крови по организму, оседая в тканях печени, поджелудочной железы, лимфатических узлах, в костном мозге и т.д.

Представляет интерес определение дозы вдыхаемых при пассивном курении составных частей дыма. В таблице 1 предоставлены некоторые составные части табачного дыма, вдыхаемого при активном и пассивном курении.

Таблица 1 Вдыхаемая доза различных ингредиентов табачного дыма при активном и пассивном курении

	Вдыхаемая доза, мг	
Составные части	активный курильщик	пассивный курильщик
	(1 сигарета)	(1 сигарета), 1 ч
Угарный газ	18,4	9,2
Оксид азота	0,3	0,2
Альдегиды	0,8	0,2
Цианид	0,2	0,005
Акролеин	0,1	0,01
Твердые и жидкие вещества	25,3	2,3
Никотин	2,1	0,04

Курение влияет на вегетативное обеспечение адаптационных механизмов. У курящих школьников в ответ на воздействие табака отмечается напряжение регуляторных механизмов, поддерживающее постоянство внутренней среды организма (гомеостаза). При неудовлетворительной адаптации для сохранения гомеостаза у курящих подростков наблюдается значительное напряжение регуляторных систем, что приводит к снижению их функциональных возможностей. Срыв адаптации приводит к нарушению гомеостаза и резкому снижению функциональных возможностей курящих детей подросткового возраста.

Экстремальным фактором, нарушающим постоянство внутренней среды организма, для человека является курение, при котором в легкие с каждой «затяжкой» папиросы попадает 1014 свободных радикалов, поражающих легочный эпителий и другие органы. При нарушении постоянства внутренней среды организма в зависимости от характера, времени и силы повреждающего агента реакция врожденного и адаптивного иммунитета будет определяться участием различных типов клеток иммунной системы, медиаторами, продуцированными этими клетками, что в целом и определяет развитие комплекса защитных реакций организма человека [3-5].

В связи с этим является актуальным исследование истинной распространенности активного и пассивного курения среди детей и подростков нашего региона, влияния на дыхательную, сердечно-сосудистую системы для оптимизации профилактической работы среди данной категории населения [6].

Значительная распространенность хронической патологии среди подростков и молодежи ставит вопрос о раннем выявлении состояний организма, которые находятся между здоровьем и болезнью, для своевременной профилактики и оздоровления. Переход здоровья к болезни в настоящее время рассматривается как ряд последовательных стадий перенапряжения адаптационных механизмов, развития функциональных нарушений в деятельности внутренних органов и систем. При неблагоприятных условиях и генетической предрасположенности это приводит к формированию хронической патологии. Согласно полученным данным курение подростков является одним из негативных факторов, воздействие которого создает условия для формирования отклонений в состоянии здоровья.

Цель работы – исследование восстановительных процессов у курящих и не курящих подростков в условиях горной местности Республики Адыгея.

Контингент обследованных подростков

В лонгитюдинальном исследовании на протяжении двух лет (с 2011 по 2012 гг.) измерены параметры состояния кардиореспираторной системы учеников 8-9 классов средней общеобразовательной школы в горном селении Гузерипль (1850 м н.у.м.) Республики Адыгея.

Организация и результаты исследования

С целью наглядной демонстрации вреда курения для юношеского организма нами организованы наблюдения за тремя группами школьников 8-9 классов. Для этого из 23 учащихся одной школы отобраны 5 человек курящих и 10 некурящих. В группы вошли школьники в возрасте 15 лет, ростом в $168\pm1,8$ см. При этом средняя масса тела одного курящего школьника составила $60\pm1,1$ кг и некурящего – $61\pm1,3$ кг.

В горных условиях по Гузерипльскому ущелью на высотах 780-800, 1100-1130 метров над уровнем моря группы по 5 курящих и некурящих школьников делали пробежку на расстояние 400 метров: сначала 200 метров вниз по склону, а затем 200 метров вверх. Пять некурящих школьников представляли контрольную группу и в забеге не участвовали.

Для оценки состояния школьников через 5 минут после пробега измеряли частоту и глубину дыхания, а также частоту пульса. Для определения показателей дыхания использовали волюметр «Veb medizintehnik» (Германия). Частота дыхания определялась по движению стрелки волюметра и открыванию впускного клапана в патрубке тройника. При этом все измерения проводились в течение 2-х минут. Глубину дыхания определяли в трехкратной повторности. Данные измерений на каждом высотном уровне проводили в одинаковом порядке, начиная с одного и того же школьника.

В результате проведенных учетов установлено, что большие различия отмечаются между курящими и некурящими учениками, чем в зависимости от высотного положения места пробежек. При этом разница в частоте дыхания между курящими и некурящими подростками по мере поднятия над уровнем моря увеличивается. Так, если на высоте 790 м н.у.м. частота дыхания курящих школьников в 1,29 раза больше, чем у некурящих, то на высоте 1800-1850 метров – в 1,65 раза. В свою очередь если разница между некурящими школьниками и подростками из контрольной группы в нижнем горном поясе составила всего 1,7%, то в верхнем поясе – 10,2%. Выявленные закономерности свидетельствуют о том, что по мере повышения над уровнем моря восстановление организма после физической нагрузки требует определенного времени. Что же касается курящих подростков, то их восстановление после физических нагрузок идет существенно дольше, чем у некурящих.

Сравнение данных по глубине дыхание показывает, что у курящих учащихся этот показатель устойчиво на 10-16% меньше, чем у некурящих. При этом изменения глубины дыхания в зависимости от высотного пояса гор проявляется в меньшей степени, чем частота дыхания. Разница в этом показателе в зависимости от высоты над уровнем моря находится в тех же пределах, что и между курящими и некурящими юношами.

Аналогичная закономерность отмечена и при измерении частоты пульса у различных групп школьников. Так, в зависимости от высоты над уровнем моря разница в частоте пульса у курящих юношей составила 11 ударов минуту (13,9%) (на превышение 1190 метров). У некурящих учеников при той же высотной разнице число сокращение при той же высотной разнице при той же выс

ний сердечной мышцы составило 4 удара в минуту (5,6%) и у контрольной группы 2 удара в минуту или 2,8% по отношению к нижнему высотному поясу.

Таким образом, курение оказывает ингибирующее влияние на процесс восстановления подросткового организма после кратковременной физической нагрузки. При этом с повышением над уровнем моря ингибирующее влияние возрастает по криволинейной зависимости.

Из высказанного следует, что в горных условиях, где ощущается уменьшение атмосферного давления по мере увеличения высотных отметок, для юношей, испытывающих повышенные физические нагрузки (занимающихся спортом, выполняющих тяжелую ручную работу и др.), не допустимо табакокурение.

Результаты проведенного исследования свидетельствуют о высокой распространенности поведенческих факторов риска среди детей подросткового возраста. В связи с этим активную профилактику необходимо проводить среди школьников 11-16 лет, когда в основном происходит формирование поведенческих навыков и повышен риск приобщения к вредным привычкам. Именно в этом возрастном периоде отмечается наиболее интенсивное курение, воздействие которого ведет к снижению функциональных возможностей организма, нарушению адаптации.

Примечания:

- 1. Ляшко Г.И., Зенкова Т.А. Курение или здоровье выбор за вами! // Валеология. 2009. № 4. С. 50-51.
- 2. Левшин В.Ф. Проблема табакокурения и пути ее решения // Курение или здоровье России? Серия докладов по политике в области охраны здоровья населения «Здоровье для всех все для здоровья» / под ред. А.К. Демина. М., 1996. 178 с.
- 3. Сахарова Г.М., Чучалин А.Г. Лечение табачной зависимости // Пульмонология. 2011. Т. 9, № 5. С. 168-172.
- 4. Гноевых В.В. Эффективность адаптации респираторной системы к курению у молодежи при никотинассоциированном риске хронической обструктивной болезни легких // Пульмонология. 2005. Т. 15, № 3. С. 69-73.
- 5. Комплексное лечение табачной зависимости и профилактика хронической обструктивной болезни легких, вызванной курением табака: метод. рекомендации Министерства здравоохранения и социального развития РФ № 2002/154. М., 2008. 34 с.
- 6. Пассивное курение фактор риска сердечных приступов (по материалам International Herald Tribune, May 21, 2007) // РМЖ. 2007. Т. 5, № 18. С. 27-28.

References:

- 1. Lyashko G.I., Zenkova T.A. Smoking or health: it's up to you! // Valeology. 2009. No. 4. P. 50-51.
- 2. Levshin V.F. Problem of tobacco smoking and ways of its solution // Smoking or Russia's health? A series of reports on health policy «Health for all and all for health» / ed. by A.K. Demin. M., 1996. 178 pp.
- 3. Sakharova G.M., Chuchalin A.G. Treatment of tobacco dependence // Pulmonology. 2011. Vol. 9, No. 5. P. 168-172.
- 4. Gnoevykh V.V. Efficiency of respiratory system adaptation to smoking of youth at nicotine-associated risk of chronic obstructive disease of lungs // Pulmonology. 2005. Vol. 15, No. 3. P. 69-73.
- 5. Complex treatment of tobacco dependence and prevention of chronic obstructive disease of lungs caused by tobacco smoking: method. recommendations of the RF Ministry of Health and Social Development No. 2002/154. M., 2008. 34 pp.
- 6. Passive smoking as a risk factor of heart attacks (based on the materials of the International Herald Tribune, May 21, 2007) // RMZh. 2007. Vol. 5, No. 18. P.27-28.