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Abstract. This paper is a continuation of the previous papers and presents the fourth part of the
author’s work. The paper reviews results concerning qualitative properties of second-order stochastic
differential equations and systems. In the first part we gave a short overview on stability of solutions of
the second-order stochastic differential equations and systems by Lyapunov functions techniques and
introduced some mathematical preliminaries from probability theory and stochastic processes. In the
second part the construction of Ito’s and Stratonovich’s stochastic integrals is given. In the third part,
analog of the chain rule for stochastic differentials (Ito’s formula) is presented. The stochastic differen-
tial equations in the sense of Ito and in the sense of Stratonovich are introduced. The existence and
uniqueness theorem for solutions of stochastic differential equations is formulated. In the present fourth
part of the work basic facts from the theory of stability of stochastic differential equations are briefly
given. The basic definitions of stability in different senses of stochastic differential systems are present-
ed, the basic general theorems on stability are formulated in terms of the existence of Lyapunov func-
tions, which are stochastic analogs of the classical Lyapunov’s theorems on stability. The concept of
stochastic dissipative systems is given. A theorem is formulated which gives conditions for existence of
periodic and stationary solutions in terms of auxiliary functions for differential equations with a ran-
dom periodic in time right-hand side, which is a periodic or stationary process.

Keywords: random variable, stochastic process, Wiener process, stochastic integral, stochastic
differential, Ito formula, stochastic differential equation

Review article

Croxacruyeckue qudepeHnnalbHbIe YDABHEHUsI BTOPOTO MOPSI/IKA:
Y CToYUBOCTD, TMCCHTIATUBHOCTD U epHOAUYHOCTD. IV. — O0630p™*
(Peyensuposana)

Maromer Mumaycrosuu lllymagos
Aowieetickutl 2ocyoapcmeennwiil yuusepcumem, Maiixon, Poccus, magomet_shumaf@mail.ru

* Continuation. No.No. 4 (252) 2019, 4 (271) 2020, 1 (276) 2021.

This work represents the extended text of the plenary report of the Third International Scientific Con-
ference “Autumn Mathematical Readings in Adygea” (AMRA — 3), October 15-20, 2019, Adyghe State Univer-
sity, Maikop, Republic of Adygea.

** I[Ipodonacenue. NeNe 4 (252) 2019, 4 (271) 2020, 1 (276) 2021.
Cmamwbs npedcmasisiem cobol pacuiupenHvlii mexkcm nieHapro2o 0oxkiaoa Ha Tpemveil medcoyHa-
poonotl nayunoi xougepenyuu « Ocennue mamemamuyeckue umenus 6 Aoviceey (OMUYA — 3), 15-20 oxmsabps
2019 2., AT'Y, Maztixon, Pecnybauxa Adviees.

15



ISSN 2410-3225 E:xekBapTA/IbHBIIi pelieH3npyeMblii, pedpepupyemblii Hay4UHbIi xKypHaI «BectHuk AT'Y». Boin. 2 (281) 2021

Annomauun. Hacmoswas cmamos a615emcs BpoO0dICeHUeM npedbloyuyell Crmamsi U npeo-
cmasnsiem coboll yemeepmyro yacmes pabomsl asmopa. B pabome Oenaemcsi 0030p pe3yrbmamos
UCCe0068aHUN KAYECMBEHHbIX CEOUCME PEULeHUTI CMOXACMUYeCKUX OUMOepeHyuaIbHbLX YPAGHEeHUL U
cucmem 8mopozo nopsoxa. B nepgou uacmu 6vi1 0an kKpamxuil 0630p pe3yibmamos padbom no cmo-
Xacmuueckou yCmoudusocmu peueHuti OuppepenyuaibHblx YpasHeHull U CUCmeM 6mopo2o nopsoKa
¢ ucnonvzosanuem annapama Qyuxyuil Jlanynoga. bBuliu npugedenvl HeKomopble npedsapumenbHvle
c8eO0eHUsl U3 meopuu 6eposIMHOCIell U meopuu CIyYatHvlx npoyeccos. Bo emopotl uacmu dana Kow-
cmpykyus cmoxacmuyeckux unmezpanos Umo u Cmpamonosuua. B mpemoeti yvacmu oano nousmue
cmoxacmuyeckoz2o ougpgepenyuana, npueedena Gopmyra Hmo oupgepenyuposanus CroNHCHOU
Gynryuu ons cmoxacmuyeckux ouggepenyuanos, oano onpeoenenue CMmoxacmuieckozo ouggepen-
yuanvbHozo ypaenenus @ popme Umo u 6 popme Cmpamonosuua, cpopmyauposana meopema cyuye-
CMBOBAHUS U COUHCMBEEHHOCMU 05l PEUeHUll CMOXACMUYEeCKUx oupepenyuaibublx ypasHenuil. B
Hacmosiuell, Yemeepmot, 4acmu pabomsl 0AIOMCcs 6KPaAmye OCHOBHblE C8EOeHUs. U3 TMeopun YCmoi-
yugoCmMu cmoxacmuieckux ouggepenyuanvuvix ypaguenuti Umo. I[lpugoosamesn ocnogHvle onpeoer e-
HUSL YCIMOUYUBOCIU 8 PA3TIUYHBIX CMBICAAX CHOXACMUYECKUX OUpdepeHyuanbrvlx cucmem, Gopmy-
JUPYIOMCSE OCHOGHbIE 00Wue meopembl 00 YCMOUYUBOCTHU 6 MEPMUHAX CYUWEeCMBO8AHUsL (YHKYULL
Jlanynosa, saenaowuecs CmoxacmudecKuMy anaio2eamu Kiaccuieckux meopem Jlanynoga oo ycmoii-
yueocmu. [laemcs nowsimue 0 cmoxacmuueckux ouccunamuenvlx cucmemax. Ilpusooumces meopema,
oarowas yciogus Cyujecmeo8anus NEPUOOUHECKUX U CIMayuo HAPHLIX Peulenull 6 MepPMUHaAx 6CHOMO-
2amenvHulX QYHKYU 01 OuhhepeHyUaIbHbIX YPAGHEHUN CO CAYHUAUHOU NepUoOU4ecKoli no 8pemeHu
npasoll Yacmuio, NPeOCmasaowel coooil ReEPUOOUHecKull Ul CMAyUOHAPHLLIL NP Oyecc.

Knrouesvle cnosa: ciyuaiinas eenuduna, CMOXacmu4eckuil npoyecc, 8UHEPOBCKULl npoyecc,
cmoxacmuueckuti unmezpan, cmoxacmuveckuii oupgepenyuan, popmynra Hmo, cmoxacmuyeckoe
oughgpeperyuanvroe ypasHenue

This paper is a continuation of the previous papers [1-3]. We continue the section
“2. Some Mathematical Preliminaries”, where some basic notions and facts from probability
theory and stochastic analysis, including the stochastic differential equations are introduced.
In [3] the notion of stochastic differential is introduced and presented the chain rule, Ito’s
formula, for stochastic differentials. The definition of stochastic differential equations in the
Ito and in the Stratonovich forms is given and formulated the existence and uniqueness theo-
rem for solutions of stochastic differential equations.

Here below we briefly present basic facts from the theory of stability of stochastic dif-
ferential equations. The basic definitions of stability in different senses of stochastic differen-
tial systems are given, the basic general theorems on stability are formulated in terms of the
existence of Lyapunov functions, which are stochastic analogs of the classical Lyapunov’s
theorems on stability. The concept of stochastic dissipative systems is given. A theorem is
formulated which gives conditions for existence of periodic and stationary solutions in terms
of auxiliary functions for differential equations with a random periodic in time right-hand
side, which is a periodic or stationary process.

We keep the general numeration of sections, definitions, theorems and formulas in the
work and continue this here.

2.18. Stability of Stochastic Differential Equations

Roughly speaking, the stability means insensitivity of the state of the system to small
changes in the initial state or the parameters of the system. The basic facts and methods on the
theory of stability of deterministic systems described by ordinary differential equations can be
found, for instance, in the books [4-9]. As for the theory of stability of stochastic differential
equations, for a detailed account and further references, we refer to the books by Kushner
[10], Khasminsky [11], L. Arnold [12], Mao [13]. We will essentially follow the Khasmin-
sky’s monograph [11].
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2.18.1. Assumptions. Basic Definitions

Consider a stochastic differential equation (in the sense of 1to)
dx(t):b(t,x(t))dt+i0, (tx(t))d& (t) (2.27)
r=1

with the respect to process x(t)=x(t,w), where x(t), b(t,x), o,(t,x) are vector func-
tions:  X(e): [t,,0) >R"  ble,e): [t;,0)xR"SR"  o,(e0):[ty,0)xR">R"  &(1)
(r=1..,m) are independent Wiener processes.

We assume that the assumptions of the existence-and-uniqueness theorem 2.1 (see
[3]), taking into account the remark 5 to this theorem, are fulfilled. Also assume that b(t, x)

and o, (t,x) are continuous with respect to t. Furthermore, let us assume that x, =X, (®)
Is with probability 1 a constant. Then for any given initial value x(to) =X, €R", the equation
(2.27) has a unique (up to equivalence) global solution defined on [to,oo), that is denoted by
X(t th, %) =X(t,o; 15, %) X(ty; ty, %)) =%,. The theorem 2.1 also implies that the solution
x(t; t,, xO;a)) has continuous sample paths (for almost all @) and provides the finiteness of
the moment E||x(t, e ; to,x0)||2.

Assume furthermore that

b(t,0)=0 and o, (t,0)=0 forall t>t,.

So, the equation (2.27) has the unique solution x(t)=0 corresponding to the initial
value x(t,)=0. This solution is called the trivial solution.

Let S, ={xeR":|x|<h}, 0O<h<co. Denote by C**(R.xsnR.) the family of all
nonnegative functions V (t, x) defined on R, xS, such that they are continuously differen-

tiable in coordinates x, of x=(x,...,X,). Define the differential operator L associated
with equation (2.27) by

0 < 0o 1 T o°
L=— b (t,x)—+= t, t, . , 2.28
ot +; I( X) OX; " i,jl(o-( X)O-( X) )iJ 8xi8xj ( )
where o (t,x)=(0y(t,X),...0, (t,X)) is  nxm-matrix  with  column-vectors

o,(t,X),...o, (t,x), T denotes transposition.
If V eC" then we have (in symbolic form)

LV (t,X)za—V+(b,§jV +1(0'0T£,EJV ,
ot OX 2 OX OX
where  b=b(t,x)=(b(t,X),...b,(t.X)), o=c(t.x)=(c, (t.x)) (i=L..n;r=1..,m),
0/ox=(8/0x,,...,0/d%,), (*,*) denotes the inner product (scalar product).

If x(t)=x(t,@) is a solution of the equation (2.27) and x(t)eS,, then the

V(t) =V (t, X(t)) has, in accordance with Ito’s theorem (see [3], section 2.16.2), a stochastic
differential (see (2.18))
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dv(t)=dV (t,x(t)) =LV (t,x(t )de{av(tx )) r(t,x(t))]dfr(t).

(This explains why the differential operator L is defined as above.)
The latter differential relation can be rewritten in the integral form as

V(tx(0)) -V (6 x(0)) = LV (5 ds+2f[av xX(5) r<s,x<s))]d;(s).

t =1,

Calculating the expectation of the left-and right-hand sides of the latter and using the
properties of stochastic integrals and Fubini’s theorem, we get

E[V(t,x(t)) =V (t5, x(t ] _[E(LV s,X(s)))ds .

(Here we assume that the expectations of the Ieft and the right there exist.)
Now, a stable system should have the property that v(t) does not increase. In the de-

terministic case o (t,x)=0 it is required the inequality V =8V/8t+(b(t,x),av/ax)£0.

But in the stochastic case, it makes sense to require instead of V <0 the inequality
E(dv(t))SO (i.e. “dV(t)SO on the average”). Since

E(dv(t))=E(LV (t.x(t))) (E(d& (t))=0)
the requirement E(dv(t))<0 will be satisfied if
LV (t,x)<0 forall t>t;, xeR"
This is the stochastic analog of the requirement that V <0 in the deterministic case

and LV <0 reducestothe V <0 if o(t,x)=0.

Let us know formulate basic definitions of stochastic stability. The concept of stability
of the trivial solution x(t, a)) =0 of stochastic differential equations as in deterministic case

can be given in various senses. We shall confine ourselves to those which are popular in the
mathematical literature.

Definition 50 ([11, p. 162, 155, 157, 171]). 1. A trivial solution x(t,a)) =0 of equa-

tion (2.27) is said to be stable in probability or stochastically stable (in the strong sense) for
t>0 ifforany t,>0 and £>0

IimP{a) sup||x(t, @ ;ty, X, H>g} 0.

X —0 >ty

Otherwise, it is said to be stochastically unstable.
2. The trivial solution x(t,a))so of equation (2.27) is said to be stochastically as-

ymptotically stable (in the strong sense) if it is stochastically stable and moreover

)LIETI)OP{CO limx(t, @ ;ty, %)) = O}:l.

t—ow
3. The trivial solution x(t,a))zo of equation (2.28) is said to be stochastically as-
ymptotically stable in the large if it is stochastically stable abd, moreover, for all t,>0,

X €R",
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P{w: limx(t, o ;to,xo):O}:l.

t—o0

4. The trivial solution x(t,)=0 of equation (2.27) is said to be exponentially stable
in mean square, if for some positive constants A and «

E||x(t,a>;to,x0)||2SA||x0||2exp{—a(t—to)} on [ty,) forall x,eR"

To formulate stochastic stability theorems, we need the following definitions (first in-
troduced by A.M. Lyapunov [4]; see also [5-9]).

Definition 51. 1. A continuous scalar function V(x) defined on a spherical neigh-

borhood of the zero point Sh:{Xe R":[X|< h} (0<h<w) is said to be positive-definite (in
the sense of Lyapunov) if V(0)=0, V(x)>0 forall xeS,, x=0.

2. A continuous scalar function V/(t,x) defined on [t,,00)xS, is said to be posi-
tive-definite (in the sense of Lyapunov) if V(t,O)EO and there exists a positive-definite
function W(x) suchthat V(t,x)=W(x) forall (t,x)e[t,,»)xS,, x=0.

3. A continuous scalar function V is said to be negative-definite if —V is positive-
definite.
4. A continuous non-negative scalar function V(t, x) is said to be decrescent (or is

said to have an arbitrary small upper bound or to have an infinitesimal upper limit as
x—0) if Iingsupv(t, x)=0. (This relation holds if there exists a positive-definite function

X201,
U(x) suchthat 0<V(t,x)<U(x) forall (t,x)e[to,oo)xsh )
5. A continuous scalar function V(t,x) is said to be radially unbounded if
lim inf V(t,x) = 0.

|| t=ty

Notice that every positive-definite function V/(x) that is independent of t is de-
crescent.

2.18.2. Basic general theorems

Suppose the assumptions at the beginning of the subsection 2.18.1 are fulfilled.

Denote by Cé'z ([to,oo)xsh ,[R+) the family of all nonnegative functions V(t,x)
defined on a half-cylinder [to,oo)x S, that is everywhere, with the possible exception of the
set {x = O}, continuously differentiable with respect to t and continuously twice differenti-

able with respect to every component of x. Itis clear that the family C** = C}?.

The following theorems are analogous to the well-known theorems of Lyapunov for
deterministic systems.

Theorem 2.2 ([11, p. 152]). Suppose that there exists a positive-definite function
V(t,x) €C3? ([ tp,0) xS, ,R.) such that

LV(t,x)<0

forall t>t, and O<|x|<h, where L is the differential operator (2.28).
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Then the trivial solution x(t,@)=0 of the equation (2.27) is stochastically stable.
Theorem 2.3 ([11, p. 155]). Suppose that there exists a positive-definite function
V(t, x C”([to, )xS, R ) that has an infinitesimal upper limitas x—0 (i.e. V is
decrescent) and LV(t,x) is negative-definite:
LV(t,x)<-W(x)<0 (W(0)=0)
forall (t,x)e[t,,)

Then the trivial solution x(t,)=0 of equation (2.27) is stochastically asymptotical-

ly stable.
The following theorem is a generalization of the well-known theorem of Barbashin
and Krasovsky [9, p. 248] to stochastic equations.

Theorem 2.4 ([11, p. 158]). Suppose that there exists a positive-definite function
V(t,x) C“([to, )xR" [R) that has an infinitesimal upper limitas x—0 (i.e. V is

decrescent) and V(t,x) is radially unbounded function,
ISJ: V(t,x) > as [|x| >,

such that LV(t,x) is negative-definite.

Then the trivial solution x(t,)=0 of equation (2.27) is stochastically asymptotical-
ly stable in the large.
Remark. For an autonomous equation

dx(t) =b(x( )dt+20( t)de. (1),

b(0)=0,(0)=0, itis sufficient to consider a function V(t,x)=V(x) that is independ-

ent of t.

The following theorem gives sufficient conditions for exponential stability in mean
square of stochastic systems in terms of Lyapunov functions. It may be viewed as a generali-
zation of well-known theorem for deterministic systems (see [7, section 11]).

Theorem 2.5 ([11, p. 171]). The trivial solution x(t,)=0 of the system (2.27) is
exponentially stable in mean square for t>t, if there exists a function

V(t,x)eCy? ([to,w)an,R+), such that
kalld < v (6) <y X
LV (t, x) <~k ||x|”
for some positive constants k,, k,, k.

Remark. In [11, p. 171] the theorem 2.4 is formulated for the system (2.27) to be ex-
ponentially stability in pth mean (peN; intheorem25 p=2).

If the system (2.27) is linear one, i.e.

dx(t):b(t)x(t)duila, (t)x(t)dE (1), (2.29)
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where b(t), o, (t) are nxn-matrices, the theorem 2.4 can be precised and specified.

Theorem 2.6 ([11, p. 185]). A necessary condition for exponential stability in mean
square of the system (2.29) is that for every positive-definite quadratic form (in  x) whose
coefficients are continuous bounded functions of time there exists a positive-definite quadratic
form V(t,x) such that

LV=-W.

The same condition, with the phrase “for every ...” replaced by ‘‘for some ...” is also

sufficient.
Remark. If matrices b(x) and o,(x) in (2.29) are constant: b(x)=b,
o,(X)=o,, ie. the system (2.29) is autonomous, then the forms V(t,x) and W(t,x) in

statement of theorem 2.6 may be replaced by forms V(x) and W(x) with constant coeffi-
cients [11, p. 185].

2.19. Dissipativity and stability in the weak sense of stochastic differential systems

In this and the two next sections we consider a differential equation of the form
[11, p. 10]
o

i F(x.t)+o(xt)é(t ), (2.30)
where x=x(t)eR", te[t,o), F(xt)=(F(xt),...F (xt)) is a Borel-measurable
function defined for (x,t)eR"x[t,,©), o(xt) isa nxm-matrix, &(t,w) isa separable

measurable stochastic process with values in R™.

We dwell on the dissipativity, stability (in the week sense) and periodicity properties
of solutions of the equation (2.30).

Definition 52 ([11, p. 13]). A stochastic process &(t,@) (t>0) is said to be bound-
ed in probability if the random variables |£(t, )| are bounded in probability uniformly in
t, le.

stug)P{”gE(ta))” > R} —>0 as R—ow.

Let x(t,®, X,,t,) be a solution of (2.30) with initial condition X(t,®, X,,t,)=X,(®).

Definition 53 ([11, p.13]). The system (2.30) will be called dissipative if the random
variables |x(t, @, %,,t,)|| are bounded in probability uniformly in t>t, whenever x, ()

satisfies the relation
P{lx (@) <R} =1.

Now let us formulate a general theorem that gives sufficient conditions in terms of
Lyapunov functions under which the system (2.30) would be dissipative.

Theorem 2.7 ([11, p. 13]). Let V(x,t) be a non-negative function, defined on the

domain D=[R§”><[O,oo), which satisfies the global Lipschitz condition with respectto x:

[V (%, 1) =V (%, 1) < B[[x, =
forall (x,t), (x,,t)eD with Lipschitz constant B.
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Suppose V(x,t) satisfies the conditions:

a) Vy = inf V(xt)—>w as R—oo, wher Ug={xeR"|x|2R};

Urx{t>ty}

b) dd_:/ <—¢V (¢ =const>0), where d°V/dt is Lyapunov’s operator for deter-

ministic part dx/dt =F(x,t) of the system (2.30).
Let F and o satisfy the local Lipschitz conditions

”F (x)-F (Xl)” <Bg %, =,

||0'(X2)—0'(X1)|| <Bg %, =i

in the domain U, ={x eR": x| < R} with a Lipschitz constant B, which generally de-

pends on R.
Assume that o also satisfy the condition

sup [o(x.t)<c,.
}

R"x{t>t,

Then the system (2.30) is dissipative for every stochastic process é(t, a)) such that
stug)E”g(ta))” <.
Remark. Another dissipativity theorems can be find in [11; see section 1.4].

2.20. Stability in the weak sense
In the section 2.18 we have considered stability in the strong sense for stochastic Ito’s
differential equations. Here in this section we consider stability in the weak sense for stochas-

tic differential equation of the form (2.30).
Consider the equation (2.30) with F(0,t)=0(0,t)=0 forall t in [0,00).

Definition 53 ([11, p. 22]). A solution x(t,a)) =0 of the system (2.30) is said to be:
1. (Weakly) stable in probability (for t>t,) if forevery £>0 and §>0 there ex-
istsand r>0 suchthat t>t, and |x[<r, then
P{x(t@; th, )] > &} <5
2. (Weakly) asymptotically stable in probability if it is stable (weakly) in probability
and, foreach &>0 thereexistsan r=r(¢) suchthatfor t—o

P{||x(t,a); to,x0)||>g}—>0 it [x[<r.

3. Stable (weakly) in probability in the large if it is stable (weakly) in probability and
if furthermore for every x,, £>0 and §>0 thereexistsa T =T(X,,6) such that

P{”x(t,a), ty, % )| > g} <5
forall t>T.
A similar definition is given for asymptotic stability in probability in the large.
Remark. There are also another types of stability of the trivial solution of (2.30) (see

[11, p. 22]).
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Now we formulate a theorem that gives effective sufficient conditions for stability in
terms of the existence of a Lyapunov function for the shortened system dx/dt=F (x,t) :

Theorem 2.8 ([11, p.24]). Suppose that for the system (2.30) there exists a positive-
definite Lyapunov function V(x,t), i.e.

inf V(x,t)=V,>0 for r>0,

t>0, |X[>r

satisfying the global Lipschitz condition
[V (%) =V (%, 1) < BJ[x, = x|
for all (x,t),(x,,t)eR"x[0,00), and conditions
V(0,t)=0,
— =<V, [o(xt)|<cV(xt)

(c,,c, >0 are constant).
Suppose moreover that the process |£(t,o)| satisfies the law of large numbers: for
each £>0, 6>0 thereexistsa T >0 suchthatforall t>T

P{ 5}

Then the trivial solution x(t,)=0 of the systems (2.30) is asymptotically stable in
probability in the large.

Remark. In [11, p. 25] a theorem of stability in pth mean of trivial solution of
(2.30) is also proved.

to+t

1to+t 1
[ le(s@)ds =2 [ Bl (s.0)]ds

t

and the condition
G
Stl;j(?E||§(ta))”< Bc, '

2.21. Stationary and periodic solutions of stochastic differential equations

An important part of the qualitative theory of stochastic differential equations is the
study of existence conditions and properties of periodic and stationary solutions of differential
equations whose right-hand side is a periodic or stationary process in t for fixed values of
the space variable x. In this section we present a general theorem that allows to give effec-
tive sufficient conditions for the existence of stationary and periodic solutions in terms of
Lyapunov’s type functions.

First we remind the definition of stationary process.

A stochastic process &(t)=&(t, @) (—o<t<oo) with valuesin R" is said to be
stationary (in the restricted sense) if for every finite sequence of numbers t,...,t
distribution of the random variables &(t,+h),...,£(t,+h) is independent of h.

If we replace the arbitrary number h in the definition of stationary process by a mul-
tiple of a fixed number 8, h=k& (k=+1, +2, ..), we get the definition of periodic
stochastic process with period 4.

A stochastic process §(t) issaid to be stationary in the wide sense if

the joint

n
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E&(t)=m=const, K(s,t)=K(t-s),
where E isan expectation, K isa covariance function
K (s,t)=cov(&(s).£(t)).

If §(t) is a stationary stochastic process with finite expectation and finite vari-
ance, then g(t) shall also be stationary process in the wide sense. Notice that, for Gauss-
lan processes these both notions coincide. If g(t) iIs a @-periodic stochastic process,
then the functions E&(t)=m(t), var&(t)=D(t) and K(s,t) are periodic with the
same period 4:

m(t+60)=m(t), D(t+6)=D(t),
K(s+6, t+0)=K(s,t).
A process that satisfies the latter relations is said to be periodic process in the

wide sense.
The following theorem holds.

Theorem 2.9 ([11, p.51]). Suppose that the vector F(x,t) and the matrix o(xt)
are @-periodic in t and that they satisfy a local Lipschitz condition; let further F(O,t) be
absolutely integrable over every finite interval, and

SUtpHG(X,t)H<OO.

Assume moreover that for the shortened system

dx
—=F(xt),
= F (%)

there exists a Lyapunov function V(x,t) satisfying the global Lipschitz condition
V(% t)=V(x,t)| < B|jx, =] (B=const)
for all (xl,t),(xz,t)eR”x[O,oo), and the following conditions:
1. V(x,t) is nonnegative, and

'QI V(x,t)—>w as [x|—>o.

2. d°V/dt is bounded above, and

d'v
sup—— —>-o as x| .
t>0

Then the system (2.30) has a @ -periodic solution for each @ -periodic stochastically
continuous process §(t,a)) with finite expectation.

If F and o areindependent of t and §(t,a)) IS a stationary process, then the

same conditions imply the existence of a stationary solution.
A theorem that gives conditions for convergence to a periodic solution of the system
(2.30) is presented and proved in [11, p. 55].

To be continued.
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