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Abstract. This paper is a continuation of the previous papers and presents the fifth final part
of the author’s work. The paper surveys the results concerning stability, dissipativity and periodicity
properties of the second-order stochastic differential equations and systems. Some new developments
in the theory of stability of stochastic differential equations based on the use of the modifying Lyapu-
nov’s second method are presented. The work consists of five parts. In the first two parts we have in-
troduced mathematical preliminaries from probability theory and stochastic processes including the
construction of Ito and Stratonovich stochastic integrals. In the third part, some facts from the theory
of stochastic differential equations are presented. The existence and uniqueness theorems for stochas-
tic systems are formulated. In the fourth part, definitions are provided and basic facts from the theory
of stability of stochastic differential equations are given. The basic general Lyapunov-like theorems on
stochastic stability, dissipativity and periodicity for solutions of systems considered are formulated in
the terms of the existence of Lyapunov functions. Here in the present fifth part, effective sufficient con-
ditions of stability in probability, exponential stability in mean square for the second-order stochastic
differential equations and systems are given. Also we give sufficient conditions for dissipativity and
periodicity of random processes defined by nonlinear second-order differential equations with random
right-hand sides. As an example the harmonic oscillator disturbed by white noise is considered. In the
final section of the present paper, we briefly review some new publications related to stochastic stabil-
ity that characterizes the state - of - the - art of the theory.
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Annomauyusa. Jlannas cmamos 16151emcsi NPoOoJdICeHUeM npeobloyuell U npedcmasisem co-
00U namylo, 3aKTOYUMENbHYI0, Yacms pabomsl asmopd. B pabome denaemcsa 0630p pezyrvmamos
UCCAeO06aHUT, KACAIOWUXCSL CEOUCME YCMOUYUBOCIIU, OUCCUNAMUBHOCTNU U CYUEeCMBOBAHUS NePUO-
OUYeCKUX peuleHull cmoxacmudeckux Ou@pepeHyuanbvlx ypagHeHutl U cucmem 6mopozo nopsaoxd.
IIpusoosmcest pezynrvmamul UCCACO08AHUL, PA3GUBAIOWUE MEOPUIO YCTMOUYUBOCTHU CMOXACMUYECKUX
oughpeperyuanbHbIX YpasHeHUll Ha 0CHO8e MOOUPUYUPOBAHHO20 8mopo2o memoda Jlanynosa. Pabo-
ma cocmoum u3 nsamu yacmeil. B nepsevix 08yx uacmsx 6viiu npueedenvl npedsapumenbHule C6eOeHUs.
U3 meopuu 6epoAMHOCHeEl U CIYYAUHBIX NPOYECCo8, BKIOUASL NOCMPOEHUE CTHOXACTNUYECKUX UHMe-
epanoe Umo u Cmpamonoguua. B mpemveil uacmu pabomul npusedeHvl HeKOmMopble haKmvl U3 meo-
puu cmoxacmudeckux oupgepenyuanvrvix ypaguenuti. Copmyauposansvt meopemvi Cywecmeosanus
U eOUHCMBEHHOCIU OJIs CMOXACMUYecKux cucmem. B uemeepmoii yacmu npusedenvt onpedenenusi u
O0aHbl OCHOBHBIE C8EOCHUST U3 MeoPUl YCTMOUYUBOCTHY CIMOXACMUYECKUX OUu@depeHyuanrvHulx ypasHe-
Huti Umo. Obwue meopemvl 06 Ycmouuugocmu, OUCCUNAMUBHOCIU U NEPUOOULHOCTNU PeuleHUll pac-
CMAMPUBAEMBIX CUCTHEM CHOPMYIUPOBAHBI 8 MEPMUHAX Cywecmeosanus dyukyuil Jlanynosa. B na-
cmosiwel, nsamou, wacmu pabomuvl 0amnvl Iphexmughvie 00CMAMOUHble YCA0GUS YCIMOUYUBOCTHU NO
BEPOAMHOCIU U IKCNOHEHYUATbHOU YCIMOUYUBOCMU 8 CpeOHeM KBAOPAMmuUeckoM peuweHutl cmoxac-
muueckux OugppepeHyuanbHbiX YypasHeHuil u cucmem 6mopo2o nopaoka. Takace 0anvl 00CMamoutble
VCA08USL OUCCUNAMUBHOCIU U NEPUOOUYHOCTIU CTIVYAUIHBIX NPOYECCO8, ONpeoensemvlx HeauHelHbIMU
OuppepenyuanbHblMU YPAGHEHUIMU 6MOPO20 NOPAOKA CO CAYYAUHbIMU NPAGbIMU Yacmsimu. B xaue-
cmee npumepa paccmMampusaemcs: 2AqpMOHUYECKUll OCYUISAMop, 603MYUeHHbII benvim wymom. B no-
cnednem paszoeiie HACMoAuell Cmamovl cOelan Kpamkuti 0630p pabom no cmoxacmuyecKkol yCmouyu-
gocmu, KOMopule XapaxKmepusyom mexyujee cCoCmosiHue meopuu.

Knrwuesvie cnosa: cmoxacmuueckuii npoyecc, 6UHEPOSCKULL npoyecc, cmoxacmuieckoe oug-
pepenyuanvroe ypagrenue, YCMOUUUBOCHb NO 8EPOSIMHOCU, IKCHOHEHYUANbHASL YCMOUMUBOCb 8
cpeonem Keaopamuieckom, OUCCUNAMUBHOCHTb, NepUOOUYHOCMb, yHKkyus JIanynosa

The paper is the final part of the five-part author’s work and this is a continuation of
the four previous papers [1-4]. In [1] the basic notions from probability theory and stochastic
analysis were introduced. In [2] the construction of Ito’s and Stratonovich’s stochastic inte-
grals was given and their basic properties were presented. In [3] some facts from the theory
of stochastic differential equations are provided. The stochastic differential equations in the
sense of Ito and in the sense of Stratonovich are introduced, and the relation between these
two forms of equations is established. The existence and uniqueness theorems for stochastic
systems are formulated. In [4] basic facts from the theory of stability of stochastic differen-
tial equations are briefly given. The basic general Lyapunov-like theorems on stochastic sta-
bility, dissipativity and periodicity for solutions of systems considered are formulated in the
terms of the existence of Lyapunov functions. Here in the present fifth part, we will give ef-
fective sufficient conditions for stability in probability, exponential stability in mean square
of the second-order stochastic differential equations and systems. Also we give sufficient
conditions for dissipativity and periodicity of random processes defined by nonlinear second-
order differential equations with random right-hand sides. As an example the harmonic oscil-
lator perturbed by white noise is considered. In the final section of the present paper we
briefly review new publications related to stochastic stability that characterize the state - of -
the - art of the theory.

3. Stability of the Second-order Stochastic Differential Equations and
Two-Dimensional Systems

In this section we present some effective sufficient conditions for stability of solutions
of the second-order stochastic differential equations.

In what follows we only need to consider the stability of the trivial (zero) solution of
systems to be considered. To this case one can reduce stability of an arbitrary solution by in-
troducing new variables, equal to the deviations of the corresponding coordinates of the “per-
turbed” motion from “unperturbed” one (this procedure is similar to deterministic case).
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3.1. Stability of the harmonic oscillator perturbed by white noise

Consider a harmonic oscillator with eigen frequency @ subject to the action of a
damping force proportional to velocity with coefficient k. In many problems it seems natu-
ral to assume that parameters k£ and @ are merely the mean value of the damping coeffi-
cient and eigen frequency, while their true values are stochastic processes with small correla-
tion interval. Such a system can be described by stochastic equation

5é+(k+alé(t))5c+(a)2+02§(t))x=0, (3.1)
where x= x(t) is a displacement of a material point from the equilibrium position at the

time ¢, f(t) is a white noise of unity intensity, o7 and o are the intensities of white

noises acting on the frequency and damping coefficient, respectively.
The equation (3.1) can be interpreted in two senses: as an Ito or a Stratonovich sto-
chastic equations. By setting x =y, one can rewrite the equation (3.1) as a system of Ito’s

differential equations

{dx = ydt ,
(3.2)

dy= —(w2x+ky)dt —(0'2x+0'1y)d§(t),
where d¢& (t) is the stochastic differential of the Wiener process & (t) (in the sense of Ito).

By conversion formula (see proposition 22 in [2]) the equation (3.1) interpreted in the
Stratonovich form is equivalent to the system of Ito’s form

dx = ydt,

dy = —[(a)2 —0'10'2/2)x+(k—0'12/2)y}dt—(02x+O'Iy)df(t).
By using a Lyapunov function in the quadratic form one can prove the following
Proposition 1 ([5]). The trivial solution (x(t) =0, y(t) =0) of the system (3.1) is ex-

ponentially stable in mean square if and only if
a) o, <2k’ inthe case 0,=0, o, #0;

(3.3)

b) o} <2k inthe case o,#0, 0,=0;

c) o <2ka)2/(a)2 +l) in the case 0,=0,=0.

From proposition 1 and Kushner’s theorem [6, p. 39] it follows that for any solution
(x(t, a)),y(l, a))) of the system (3.2) we have x(t, a)) -0, y(t, a)) —0 as t—+oo with

probability 1.
For the system (3.3) we get the analogous statement.

Proposition 2 ([5]). The trivial solution of the system (3.3) is exponentially stable in
mean square if and only if :

a) o, <2k’ inthe case 0,=0, o,#0;

b) o) <k inthe case o,#0, o,=0;

c) 62<a)2+%—\/a)4+(l—k)a)2+(k+1)2/4 in the case o,=0,=0.

In addition, for any solution (x(t),y(t)) of the system (3.3) x(t) —0, y(t) —0
as t—oo with probability 1.
Comparing the inequalities a)—c) from propositions 1 and 2 we see that the stability
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conditions coincide in the case o, #0, o, =0 for both the Ito’s and Stratonovich’s form of
the equation (3.1), but in the case o, =0, o, #0 the stability condition in the Ito form is
weaker than corresponding stability condition for equation (3.1) in the Stratonovich form. In
the case o, =0,, the condition c) in propositions 1 and 2 are not uniquely comparable.

3.2. Stability of the second-order nonlinear stochastic differential equations

In this subsection we provide some sufficient conditions for stability in probability and
exponential stability in the mean square of trivial solution of the second-order nonlinear sto-
chastic differential equations.

Consider a stochastic equation

56'+f(x))'c+g(x)+0'1()'C)fl(t)+02(x)§2(t)=0, (3.4)
where the functions f'(x), g(x), o,(»), o,(x) satisfy the Lipschitz condition, & (¢) and

52 (t) are independent Gaussian white noise processes with unit intensity.

The equation (3.4) can be written as a system of Ito stochastic differential equations
dx = ydt,
dy = —[yf(x) + g(x)] dt—o, (y)d§1 (t) -0, (x)a’é"2 (t),

where d& (¢) and d¢&,(t) are stochastic differentials to be understood in the sense of Ito.

(3.5)

If the equation is interpreted as stochastic differential equation in the sense of Stra-
tonovich, then by conversion formula (proposition 22 in [2]) we can rewrite it in the equiva-
lent Ito’s form as

dx = ydt,

dy:{yf(xpg(x)-w dt -, (y)dE (1) -, (x)d& (1),

2

The system (3.3) is a special case of the system (3.5): if f(x)=k, g(x)=0’x,
o,(x)=0x, o,(x)=0,x and & (1)=& (), then we get (3.3).
The following theorem holds.

Theorem 3.1 ([7]). Suppose the following conditions are satisfied :
a) b <f x)<b2 forall xeR;

(

b) b3<g(x)/x<b4 forall xeR, x#0, g(O)zO;

) 0<o,(y)/y<pB forall yeR, y#0, o,(0

d) 0<0'2(x)/)c<ﬂ2 forall xeR, x#0, 0'2(0

e) there exists a constant « >0 such that
by-ap;[2>0, a(b-p/2)>1,

where b, b,, b,, b,, B, B, aresome positive constants.

=0;
0

Then the trivial (zero) solution of the system (3.5) is exponentially stable in mean
square.

Remark 1. The condition €) is equivalent to the inequality 2b,b, > b, 57 + 3; .
Remark 2. In the linear case f(x)=b,, g(x)=byx, o,(y)=py, o0,(x)=pBx

the conditions of theorem 3.1 turn into necessary and sufficient ones ([8, p.222]):
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2bb, > b+ B, by >0, b, >0.
The proof of the theorem 3.1 is based on considering of special Lyapunov function

X

V(x,y)z_[sf(s)ds+xy+%yz+0{]Eg(s)ds (3.6)

0
and subsequent application of the theorem 2.5 (see [4]).
In the particular case f(x)=b, g(x)=2cx+3x*, a=2 the function (3.6) turns to

the function constructed in [9] for the system (3.5), where f(x)=b, g(x)=2cx+3x’,
O'I(y)zO, o, (x):ax.
Consider a special case for the system (3.5): o,(y)=0,y, 0,(x)=0,x. Then using

the Lyapunov function

X

V= (2b—af)Jsf(s)ds+2Ig(s)ds +(2b—012)xy+y2
0 0
by virtue of theorem 2.2 ([4]) one can establish the following statement.

Theorem 3.2 ([7]). Assume that in the system (3.5) o, (y) =0y, 0, (x) =o,x. If
the following conditions are satisfied :

a) f(x)>b>0 forall |x|<e, £>0;

b) (2])—0‘12)g(x)/x—(722 >0 forall |x|<e, x=0;

¢) 2b—-0o7 >0,
then the trivial solution of the system (3.5) is stochastically stable.

The theorem 3.2 is a generalization of a statement presented in [9] for the particular
case f(x):b, g(x):2cx+3x2, Gl(y):aly, o, (x)=0.

Consider a stochastic equation

5c'+f(x,5c))'c+g(x)+0'x§(t)=0 (o =const). 3.7
The equation (3.7) is to be interpreted in the sense of Ito or in the sense of Stra-

tonovich.
Using the Lyapunov function

\% :%xz +xy+%y2 +a.([g(s)ds
and applying the theorem 2.4 ([4]) one can prove the following
Theorem 3.3 ([7]). Suppose that :
a) 0<b, < f(x.%)<b+2(1-ab)(ac*/2-b,) forall x, i
b) g(x)/)c>b2 >0 forall x+0, g(0)=0;

¢) there exists a constant « >0 such that ab, >1 and b, >ac”/2.

Then the trivial solution x=0, x=0 of the equation (3.7) is stochastically asymp-
totically stable in the large.

Consider the stochastic equation
i+F(%)+g(x)+oxé(t)=0. (3.8)
The following theorem holds.
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Theorem 3.4 ([7]). Suppose that :

a) b+e<F(y)/y<b+2b,—¢ forall y#0, F(0)=0;

b) b, < g(x)/x<b3 forall x+0, g(O) =0;

¢) o’ <2b,,
where b, b,, b,, & aresome positive constants. Then the trivial solution x=0, x=0
of the equation (3.8) is exponentially stable in mean square.

The proof of theorem 3.4 is carried out using the special Lyapunov function
X b2
V =(b, +1)(y2 +2J.g(s)a’sj+(2bl —02)(71)52 +ny
0

and applying the general theorem 2.5([4]).
In the linear case F(x)=bx, g(x)=b,x the conditions of theorem 3.4 turn to nec-

essary and sufficient conditions ([8, p. 222]): o’ <2b,, b, >0.

Analogous stochastic stability conditions one can derived for the equations (3.4), (3.7)
and (3.8) if they are interpreted in the sense of Stratonovich. For this it should convert the sto-
chastic systems in the Stratonovich form into stochastic systems in the Ito form by using
proposition 22 in [2].

In [10] the nonlinear stochastic differential equation of the form

5é+b(x,)'c,t)+g(x)= G(x,)'c,t)f(t)-i-g(t)
is considered to be a generalization of above equations. Here 5(t) is an external driving

force. For latter equation an asymptotic bound is established.
Now we consider perturbations from another class of random processes different from
white noises. Here we present a theorem of stability in probability for the stochastic equation

)'c'+f(x))'c+g(x) = O'(x,)'c)é(t,a))
or for the equivalent system
xX=y, j/:—f(x)y—g(x)+0'(x,y)§(t,a)), (3.9
where f(x), g(x) and o(x,y) satisfy alocal Lipschitz condition, &(7,@) is a measur-

able random process with values in R and almost surely (i.e. with probability 1) integrable
over every finite interval.

Assume that f(0)=g(0)=0(0,0)=0. This implies that (x(¢,0)=0, y(t,@)=0)

is trivial solution of (3.9).
Introduce a Lyapunov type function

. b
V(x,y)=[y2/2+yxy+jg(s)ds+ﬂx2/2j , (3.10)

where [ and y are some real numbers which are chosen later.
We set

B= sup ‘V('xZayz)_V(xlayl)‘.
(x.31)€l? |x2—x1|+|y2—yl|
Suppose the stochastic process & (t, a)) satisfies the law of large numbers.

The following theorem holds.

16



ISSN 2410-3225 E:xexkBapTajIbHbIIi pelileH3upyeMblid, pepepupyeMblii Hay4Hblii :kypHaI «BectHuk AI'Y». Boin. 3 (286) 2021

Theorem 3.5 ([11]). Suppose the functions f(x) , g(x) and O'(x,y) satisfy the

conditions :
a) b <f(x)<b2 forall x;

b) b3<g(x)/x<b4 forall x+#0;

c) ‘O'(x,y)‘ < b, (x2 +y° )% for all (x,y) eR’;

d) supE|&(,0)| <b, /b B,
t>0
where b, (i=1,...,6) are some positive numbers,

e) the numbers B and y in(3.10) are such that y* < B<4bb,/b: .

Then the trivial solution of the system (3.9) is asymptotically stable (weakly) in the
large.

The proof of theorem 3.5 is based on using the Lyapunov function (3.10) and subse-
quent application of general theorem 2.8 ([4]).

3.3. Stability of the two-dimensional autonomous stochastic systems

Here we present some sufficient conditions for stochastic stability of trivial solution of
the second-order systems of stochastic differential equations of the first order.

3.3.1. Linear stochastic systems

We start by considering linear autonomous homogeneous system whose parameters
are perturbed by white noise

xX= (a+ Glg,é(t))x+(b+ach(t))y,
y= (c + 03§(t))x+(m + qé(t))y,

where x=x(t,0), y=y(t,0), te [0,00) , cf(t) is a Gaussian white noise with unit inten-

(3.11)

sity, a,b,c,m, o, (i=1,...,4) are real numbers.

As above in subsections 3.1 and 3.2 the system (3.11) can be interpreted in two dif-
ferent senses: as a system of two stochastic differential equations of the Ito’s form or Stra-
tonovich’s form. Since the Stratonovich’s form can be reduced by conversion formula
(proposition 22 in [2]) to the Ito’s form, we will focus on interpreting the system (3.11) in
the Ito’s sense:

{dx(t):(ax+by)dt+(<71x+0'2y)d§(t), (3.12)

dy(t) :(cx+my)dt+(a3x+0'4y)d§(t).
Here &(t)=£&(f,) isa Wiener process, dx(t), dy(t), d&(¢) are Ito’s stochastic

differentials.
The Stratonovich form of system (3.11) can be obtained from (3.12) by replacing the
coefficients a, b, ¢ and m as follows

a—>a+(012+0203)/2, b—b+o,(c,+0,)/2,
c—>c+03(01+0'4)/2, m—>m+(0'j+0'203)/2.

Let one of the coefficients of the “random” part of the system (3.12) be nonzero (for
instance, o, # 0) and others be zero.
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Theorem 3.6 ([5]). Let o0,#0, o,=0,=0,=0. Then the trivial solution
(x(t) =0, y(t) = 0) of the system (3.12) is stable in probability if

1) a+m<0, am—bc>0, b#0;
2(a+m)(bc—am)

m* +(am —bc)

2) o/ <

In addition, any function (x(t), y(t)) of system (3.12) possesses the property:
(x(t),y(t))—){(x,y):x=0} as t— oo with probability 1.

The inequality 2) in the theorem 3.6 gives the lower estimate of the bifurcation value
of white noise intensity. The theorem 3.6 is proved by using the Lyapunov function

V= (am —bc)x2 +(mx—by)2

and applying theorem 2.2 ([4]).
The mean square exponential stability conditions of trivial solution is provided by
the following

Theorem 3.7 ([5]). Let o, #0, o0,=0;,=0,=0. Then for the trivial solution of sys-

tem (3.12) to be exponentially stable in mean square it is necessary and sufficient that the
conditions should satisfy :
1) a+m<0, am—bc>0;

_ [ 2, 2
2) af<min{2(a+m)(bc am) PHNP +cq}, if ¢c#0, where

m2+(am—bc) ’ ¢’

p z(a+m)(c2 +m’ +am—bc)—2c(ac+bm), q=4(am—bc)[(a+m)2 +(b—c)2} ,

and o7 <-2a (a<0), if ¢=0.

In addition, for any solution (x(t),y(t)) of (3.12) x(t)—)O, y(t)—)O as
t = oo with probability 1.

The inequality in the condition 2) in theorem 3.7 gives the lower bound of the bifurca-
tion value of white noise intensity X, up to which the perturbed system (3.12) remains ex-

ponentially stable, and for which the system first becomes unstable.

In the case when two or more coefficients of the “random” part of system (3.12) are
different from zero the stability conditions become cumbersome and difficult to use. For the
details see [5].

3.3.2. Stability of two-dimensional nonlinear stochastic systems

Now we will consider nonlinear second-order stochastic systems. We provide suffi-
cient conditions for stochastic stability of two-dimensional diffusion process described by a
system of nonlinear Ito stochastic differential equations.

Consider a system of two stochastic differential equations of the form

{dxl (t) :[fn (x1)+ = (xz)]dt+0'(xl)d§(t),
dx, ()= for (3,)+ o (%) ] it

where two of the functions #, (xj):fij(x.)/xj (x,#0), i,j=1,2, are constant, &(¢)

J

(3.13)

is a Wiener process, and the dx, (¢), dx,(t), d&(t) are treated as Ito’s stochastic differ-

entials.

18



ISSN 2410-3225 E:xexkBapTajIbHbIIi pelileH3upyeMblid, pepepupyeMblii Hay4Hblii :kypHaI «BectHuk AI'Y». Boin. 3 (286) 2021

It is assumed that the functions £, (x j) are continuously differentiable for all x,

the function G(xl) satisfies the Lipschitz condition, f; (0) =0, 0(0) =0. We suppose
that two of the four functions f; (7,j=1,2) are nonlinear ones, and the other two ones

are linear.
The deterministic case o (x,)=0 was considered by Erugin [12-14] and Malkin [15]

for systems of the form (3.13) with a single non-linear function and by Krasovsky [16—-18] in
the case of two nonlinearities.

Let us formulate some basic results concerning stability of trivial solution of sys-
tem (3.13).

We will limit ourselves to considering (3.13) in the case:

a) fll(xl):f(xl)= fzz(xz):g(xz)v flz(xl):axza f21(x2):bxl;
b) fll(xl):f(xl)a fm(xl):g(xl)a flz(xl):axza fzz(xz):bxza

where a and b are real constants.
In the remaining cases of (3.13) the corresponding results are similarly formulated.
In each particular case of the system (3.13) we will use notation without indices.
Consider the stochastic system

dx(t)=(f(x)+ay)di+o(x)dé(r), dy(r)=(bx+g(y))dt, (3.14)
where a and b are real constants.

Theorem 3.8 ([19]). Suppose there exist positive numbers 6, (i=0,1,2,3,4) anda

number A such that :

1) clf(x)/x—ab>50 forall x+0;

2) f(x)/x+¢ <=5, forall x#0;

3) czg(y)/y—ab>52 forall y#0;

4) g(y)/y+c, <=6, forall y#0;

5) ¢.f'(x)—ab<A forall xeR;

6) 0<0'()c)/x<54 forall x+0;

7) 8 <28,6,/(cl +A).

Here ¢, and c, are constants such that c,c,=ab and ab#0.

Then the trivial solution of the system (3.14) is asymptotically stable in the large.
If'in addition to conditions 1)-7) the inequalities hold :

8) ¢ f(x)/x—ab <o forall x#0;

9) czg(y)/y—ab<56 forall y#0,
where Oy and O, are some positive numbers, then the trivial solution of system (3.14) is
exponentially stable in mean square.

It is easily to check that for the special deterministic and linear case a(x)EO,

f(x)=fyx and g(y)=g,» (/.8 €R) the conditions of theorem 3.8 turn into the well-

known necessary and sufficient Routh-Hurwitz conditions for the stability of solutions of sec-
ond-order linear systems with constant coefficients: f,+g,<0, f,g,—ab>0. Note that

the deterministic part (a(x) =0) of the system (3.14) is a control system which was investi-
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gated by Ayzerman [20].
We deliver another stability theorem for a system of the form (3.13).

Consider the system
{dx(r) = (f(x)+ay)dt+ O'(x)df(t),

dy(t) (g(x) +by)dt,
where a and b are constant.

(3.15)

Theorem 3.9 ([19]). Suppose there exist positive numbers o,, 06,, 0, and a number

A such that the following conditions are satisfied :
1) f(x)/x+b+e<=6, forall x+0;

2) (b+8)f(x)/x—ag(x)/x>51 forall x+#0;
3) (b+¢)f'(x)—ag'(x)<A forall xeR;

4) 0<0'()c)/x<52 forall x+0;

5) &7 <25,6,/(b> +A).

Here & >0 is a sufficiently small number.
Then the trivial solution of the system (3.15) is asymptotically stable in the large.
Ifin addition to conditions 1)-5) the inequality

(b+g)f(x)/x—ag(x)/x< 0, forall x#0 (6,>0)
hold, then the trivial solution of system (3.15) is exponentially stable in mean square.

As above 1n the deterministic linear case the conditions of theorem 3.9 turn into the
Routh-Hurwitz stability conditions.
Let us apply theorem 3.9 to the system

dx(t)=(y—o(x))dt+o(x)dé(t), dy(t)=—h(x)dt, (3.16)
whose deterministic part (G(x) =0) is equivalent to the classical Lienard equation
)'c'+(o'(x)5c+h(x)20.
The system (3.16) is a special case of (3.15), where f(x)=-¢p(x), g(x)=-h(x),

a=1, b=0.
We have

Corollary. Suppose the following conditions be satisfied for all x € R:
1) xp(x)> (8, +&)x’;
2) x(h(x)—ep(x))>6x*;
3) h'(x)-ep'(x)<A;
4) 0<xo(x)<6x*,
and the inequality 5; <268,6,/A holds, where &,, S,, 8, and A are some positive

numbers.
Then the trivial solution of the system (3.16) is asymptotically stable in the large.
Ifin addition to above conditions the inequality

x(h(x)—gqo(x)) <ox* (6,>0)

holds for all x, then the trivial solution of system (3.16) is exponentially stable in mean
square.
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The proofs of the theorems 3.8 and 3.9 are based on the construction special Lyapunov
functions and studying the properties of these functions along the solutions of the systems
considered, and on the application of the general theorems 2.4 and 2.5 ([4]).

Assertions similar to Theorems 3.8 and 3.9 also hold for systems of the form (3.13)
with diffusion coefficient depending on the coordinate x, .

4. Dissipativity and Periodicity of Second-Order Stochastic Differential
Equations

In [21, 22] sufficient conditions under which the second-order nonlinear differential
equations perturbed by a random process possess the dissipativity property are obtained. Also
sufficient conditions for existence of stationary and periodic solutions of second-order differ-
ential equations with stationary and periodic random right-hand sides are given.

Consider the stochastic equation of the form

)'é+(p(x,)'c,t)+g(x)=0'(x,)'c)§(t,a)), (3.17)

or the equivalent system
xX=y, )'/:—(o(x,)'c,t)—g(x)-i—a(x,ic)f(t,a)), (3.18)
where the functions go(x, y,t) , g(x) and O'(x, y) are such that the system (3.17) satisfy

the existence and uniqueness theorems 1.5 and 1.6 from [8, p. 9, 10]. Therefore the system
(3.17) with initial conditions x(#,)=x,(@), »(#,)=y,(®) determines a new stochastic
process which is almost surely absolutely continuous for all #>¢,.
We note that the deterministic case (o (x,%)=0) of the equation (3.17), where
D) p(x,x,t)=f(x)x; 2) p(x,x%8)=F(x); 3) o(x,%1)=f(xx)x,
was studied by many authors whose results are presented in detail in the classical mono-
graph [23].

Here we will only state dissipativity and periodicity theorems for the two special
cases:

D o(x,p.0)=f(xy)y and 2) ¢(x,y.1)=F(y).
Theorem 4.1 ([21, 22]). Let go(x, y,t) = f(x,y)y. Assume that the process ‘f(z, a))‘

has a bounded expectation :
supE‘f(t, a))‘ <o

=1,
and ‘O'(x,y)‘ is bounded : ‘O'(x,y)‘ <B (B=const) forall x, y.
Suppose there exist positive numbers c,, c,, ¢;, ¢, and R such that :
1) ¢ < f(x,y) <c, forall (x,y) eUy;
where Uy = {(x,y) X+t < R} ;
2) o< g(x)/x <c, forall |x| > X,
where X, is some positive number.

Then the system (3.17) is dissipative.

Note that in [21, 22] the above theorem is formulated under general assumption with
respect to function f(x,y).

Theorem 4.2 ([21, 22]). Let (p(x,y,t) = F(y). Assume that the process ‘f(z, a))‘
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has a bounded expectation and ‘0'( X, y)‘ is bounded.

Suppose there exist positive numbers c,, c¢,, ¢;, ¢,, X and Y, such that :

1) ¢ <g(x)/x< ¢, forall |x| > X,

2) e;<F(y)/y<e; forall |y|>Y,.

Then the system (3.17) is dissipative.

By considering various narrower classes of random processes & (t, a)) ([8, p. 16]) one
can derive various dissipativity conditions under less stringent restrictions on the functions

g(x), f(x,y), F(y) and a(x,y).

The following two theorems provide sufficient conditions for the existence of periodic
and stationary solutions of (3.17).

Theorem 4.3 ([21, 22]). Suppose the process f(t,a)) is a stationary process. Then
the conditions of theorems 4.1 and 4.2 imply the existence for a stationary solution of (3.17).

Theorem 4.4 ([21, 22]). Let the functions f(x,y), F(y), g(x) and a(x,y) be
replaced by f(x,y,t), F(y,t), g(x,t) and O'(x,y,t), respectively.

Suppose f(x,y,t), F(y,t), g(x,t) and O'(x, y,t) are T -periodic in t and
f(O, O,z‘) , F(O,t) , g(O,t) and 0'(0, O,t) are absolutely integrable over every finite in-
terval, and O'(x, y,t) is bounded :

‘O'(x,y,t)‘ <B forall x, y, t (B=const).

Then the conditions of theorem 4.1 and 4.2 provide the existence of a T -periodic so-
lution of the system (3.17) for each T -periodic stochastically continuous process f(t,a))
with finite expectation.

The proofs of the theorems 4.1-4.4 are based on the construction special Lyapunov
functions and on the application of general theorems 1.8 and 2.6 from [8, p. 13, 51].

5. A brief Review of Stability of Stochastic Differential Equations

In this section we will present a short overview of some further investigations related
to the stability and dissipativity properties of stochastic differential equations.

First we notice that the theory of stochastic stability began to form much later than
other sections of the stability theory. This theory arose for the purpose of studying the stabili-
zation of controlled motion in systems perturbed by random noise. The early stages of devel-
opment of the theory of stochastic stability are in detail presented in the survey of Kozin [24].

The significant influence on the development of the stochastic stability was made by
the pioneering works of Bertram and Sarachik [25] and Kac and Krasovsky [26]. In [25] suf-
ficient conditions for stability in the mean square are obtained by an extension of “Lyapu-
nov’s Second Method” to stochastic problems. In [26] the authors investigate the stability of

the zero solution of the equation x = f/(x,1, y(t)), where y(t) is a time-homogeneous fi-
nite-state Markov chain. The solution of this problem is given in terms of Lyapunov func-
tions V(x,¢), in this case instead of the derivative V(x,t) =dV/dt along the sample path,
roughly speaking, the expectation LV (~EV(x,t)) of this derivative is considered. This

paper also contains important results concerning the stability of linear systems and stability
in the first approximation. The paper by Kac and Krasovsky has stimulated considerable fur-
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ther research.
A fairly complete understanding of the approaches of the early period to the analysis
of stability of random processes described by ordinary differential equations of the form

x=f(x0)+o(xt)é(r0), xeR’, (5.1)
where f(z, a)) is a random process from a sufficiently wide class of processes (e.g., the ex-

pectation ‘cf(t, a))‘ to be bounded) is given in the survey [24] and monograph [8, ch. 1]. The

properties of solutions of the systems of the type (5.1) are studied by using Lyapunov func-
tions of the truncated system x = f (x, t) .

With regard to the stochastic differential equations of the type
x=f(x,t)+a(x,t)§(t,a)), xeR", (5.2)
where £(f,w) is a “while” noise (ie. a Gaussian process such that E&(t,0)=0,

E[ﬁ(s) : f(t)] =5(t—s)), there exist numereous publications devoted to the stability prop-

erty of such equations and related topics. For a detailed account and further references we re-
fer to the books by Kushner [6], L. Arnold [27], Friedman [28], Mao [29], Levakov [30], and
above all, the profound work by Khasminsky [8] (see also bibliography in these books).

We also mention the monographs by Kolmanovskii and Nosov [31], and Mohammad
[32] in which the Lyapunov’s second method was developed to deal with the stability of sto-
chastic functional differential equations. In these books a Lyapunov-like theory for the stabil-
ity of stochastic differential equations has been developed. A sufficiently comprehensive pres-
entation of results on the stability of stochastic differential equations of the type (5.2) by me-
thod of Lyapunov functions (Lyapunov’s second or direct method) is also given in survey pa-
pers [10, 33-36].

Below we present briefly some recent results concerning stability of solutions for sto-
chastic differential equations and related issues.

To begin with, there is a series of works by Friedman and Pinsky [37, 38] and Pinsky
[39]. In these papers there are given stability conditions for a point and for an invariant set. In
[37] the authors investigate asymptotic behavior of solutions of linear time-independent Ito
equations. A sufficient condition for asymptotic stability of the zero solution is given. In the
two-dimensional case conditions for spiralling at a linear rate are determined. In [38] suffi-
cient conditions under which the process determined by a system of Ito equations converges
to the boundary, that consists on points and surfaces, when ¢ — oo, are given. In the case of
plane domains, the authors give conditions to ensure that the process “spirals”. In [39] the au-
thor construct asymptotic expansions for the exponential growth rate (Lyapunov exponent)
and rotation number of the random oscillator when the noise is small and is defined by a tem-
porally homogeneous Markov process with a finite number of states.

A generalization of the invariance theorem of La Salle (La Salle invariance theorem
[40, 41]) to stochastic systems was given by Kushner [42, 43] and Mao [44].

In [45] it is considered a non-linear system of stochastic differential Ito equations
of the type

dx =(Ax+bp(1,0))di+bxdw (1), o=c'x, x=r'x, (5.3)

where xeR", 4, b, c, r are real matrices of dimensions nxn, nxl, nxk, respec-
tively; w(t) is a k-dimensional Wiener process (dw 1is Ito stochastic differential),

go(t,a) is a scalar function which satisfies the conditions to ensure that solutions of (5.3) ex-
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ists through any point and are unique, and (/)(t, 0) =0. Itis assumed that A4 is Hurwitz ma-

trix. For the systems of the type (5.3) a frequency domain criterion for absolute stochastic sta-
bility in the class of nonlinearities

@, ={¢E(0(t,0):0£(p/(7£,u0}, 0 < 44, < +0,
is derived.

In the works [46, 47] sufficient conditions for asymptotic and exponential stability in
mean square of nonlinear stochastic control systems are obtained in frequency domain. The
results are derived by using the stochastic analogs of the Lyapunov’s second method and the
Kalman-Yakubovich-Popov frequency lemma.

In series of works [48—50] algebraic coefficient criteria for stability of solutions of lin-
ear systems of Ito stochastic differential equations are obtained. In [48] coefficient criterion
and sufficient conditions for asymptotic stability with probability one of solutions of the con-
tinuous-time systems of Ito linear parametric stochastic differential equations are derived by
the method of Lyapunov functions. These conditions are expressed in terms of the coefficients
of the equations: systems’ matrix 4 and parametric random perturbation matrix 5. In [49]
matrix criterion and sufficient conditions for asymptotic stability and boundedness with prob-
ability one of solution of discrete-time linear stationary stochastic difference equations are
obtained. In [50] algebraic coefficient criteria and sufficient algebraic conditions for asymp-
totic stability of solutions of linear continuous-time stochastic time-delayed difference equa-
tions are derived by method of Lyapunov function. The criteria and conditions are formulated
in terms of the existence of solutions of some matrix equations. In [51] sufficient criteria for
asymptotic stability and boundedness of solutions of stochastic differential equations are es-
tablished via multiple Lyapunov functions.

In 2001 L. Arnold and Schmalfuss ([52]) developed Lyapunov’s second method (the
method of Lyapunov functions) for random dynamical systems [53] and random sets together
with matching notions of attraction and stability. In this case, the Lyapunov functions for ran-
dom dynamical systems are also random. The authors introduce definitions of stability, attrac-
tor and Lyapunov function in such a way that would allow them to prove that a random set is
asymptotically stable if and only if it has a Lyapunov function.

In [54] sufficient and necessary conditions for the existence of a stochastically
bounded solution of a nonlinear nonhomogeneous stochastic differential equation are ob-
tained. The conditions is given in terms of the exponentially p -stable for some p >0 for
the solution of the corresponding linearized homogeneous stochastic differential equation. In
[55] the boundedness and exponential asymptotic stability of solutions of nonlinear stochastic
differential systems are studied. Sufficient conditions for boundedness and exponential as-
ymptotic stability are derived using Lyapunov functions.

In [56] the authors generalize the well-known Barbashin-Krasovsky theorem to the
case of stochastic differential equations. They obtain the criteria for asymptotic stability in
probability of the zero solution of an autonomous system of stochastic differential equations

in the case when LV <0 and the set M={LV =0} does not include entire semitrajectories

of the system considered almost surely. Here V=V(x), xeR", isa Lyapunov function,

and L is the generator differential operator associated with the system.

In [57] the authors proposed a specific linear combination of subsystems’ energies as
Lyapunov function for multi-degree-of-freedom nonlinear stochastic dynamical systems, and
the corresponding sufficient condition for the asymptotic stability with probability one is de-
rived. In [58] so called stochastic bounded stability property for a general class of nonlinear
stochastic systems is studied. The bounded stability property is such that for a given bounded
region and realization probability, sample paths remain bounded in the assigned region with
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the assigned probability. The authors provide a sufficient condition for the proposed bounded
stability to be satisfied conditions based on a Lyapunov-like-function.

In [59] a general class of the nonlinear time-varying systems of Ito stochastic differen-
tial equations is considered. Two problems on the partial stability in probability are studied:
1) the stability with respect to a given part of the variables of the zero equilibrium, 2) the sta-
bility with respect to a given part of the variables of the “partial” (zero) equilibrium. The sto-
chastic Lyapunov function-based conditions for the partial stability in probability are estab-
lished. In [60] necessary and sufficient conditions for stability in probability of nontrivial so-
lution of a stochastic nonlinear control system are provided.

Much attention has been given to the investigation of stability problems for systems of
stochastic differential equations with delay. Kushner [61], Kolmanovskii [62], Kolmanovskii
and Nosov [31, ch. 4], Kolmanovskii and Shaikhet [63], Shaikhet [64] and others proved gen-
eral theorems of the Lyapunov type. In [65] sufficient conditions for the stability and bound-
edness of solutions of a stochastic delay differential equations of the second order are ob-
tained by constructing a Lyapunov functional.

The problems of dissipativity for stochastic dynamical systems defined by stochastic
differential equations are studied by many authors [66—69] (see also bibliography in them). In
these works the notion of dissipativity for stochastic systems considered is understood as a
stochastic version of the concept of dissipation in deterministic dynamical systems (with input

ueR”, output ye [Rl, and state x € R") first introduced by Willems [70]. The latter notion

(for deterministic systems) involves the real-valued functions r(u, y) (called the supply

rate), V(x) (called the storage function) that should satisfy some integral inequality, called

the dissipativity inequality. The papers [71-75] are devoted to the existence of random peri-
odic solutions for stochastic differential equations.

6. Conclusion

The paper consisting of five parts surveys the publications concerned with qualitative
properties of the second order linear and nonlinear stochastic differential equations and sto-
chastic systems. In the final fifth part, in the section 5, of the paper a brief overview of stabil-
ity and related to it tasks of stochastic differential equations is given. Some new developments
in the stability theory of stochastic differential equations, based on the use of the method of
Lyapunov functions are presented.

The qualitative properties that we adress are stochastic stability, stochastic dissipativ-
ity as well as existence of stationary and periodic solutions. We stated theorems which give
sufficient conditions for the stochastic systems considered to posses these properties. The re-
sults formulated was obtained using Lyapunov’s second method. The conditions for stability,
dissipativity and periodicity are given in terms of the systems’ coefficients.

In the first two parts [1, 2] of the paper some preliminaries from stochastic calculus are
given, including the constructions of the Ito’s and Stratonovich’s stochastic integrals, and
their basic properties and the relationship between the two types of the integrals are presented.
In the third part [3] some basic facts from the theory of stochastic differential equations are
provided. The stochastic differential equations in the sense of Ito and in the sense of Stratono-
vich are introduced, the relation between the two forms of equations is established, the exis-
tence and uniqueness theorems are formulated. The forth part [4] briefly provides basic facts
from the theory of stability of stochastic differential equations. The basic general Lyapunov-
like theorems on stochastic stability, stochastic dissipativity and periodicity are formulated in
terms of the existence of Lyapunov functions.

In the present, fifth, part effective sufficient conditions for stability in probability, ex-
ponential stability in mean square of the second-order linear and nonlinear Ito stochastic dif-
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ferential equations and systems are given. Also sufficient conditions for dissipativity of ran-
dom processes defined by nonlinear second-order differential equations with random right-
hand sides are provided. For the latter class of stochastic equations sufficient conditions for
the existence of periodic and stationary solutions are presented. Necessary and sufficient
conditions for stability in mean square of the harmonic oscillator perturbed by white noise
are established. The final section of the paper briefly reviews new results and publications
related to stability of stochastic differential equations, and characterizes the state-of-the-art
of the theory.

Finally, we remark that the problems of the stochastic stability and related to them
ones are still active area of research and the flow of publications in this topics does not de-
crease.
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